
Particle Filter SLAM and Texture Mapping

Saqib Azim
ECE Department

UC San Diego
sazim@ucsd.edu

Abstract

In this project, we have implemented a SLAM system to
localize and map the environment simultaneously using par-
ticle filters. The system uses data from multiple sensors such
as encoders, LIDAR, IMU, and RGBD Kinect camera. The
project is divided into two parts - in the first part, we use
particle filter algorithm to localize and map the environ-
ment using only LIDAR, encoder and IMU sensors. In the
second part, we add texture to the created map using data
from RGBD Kinect camera attached to the robot and the
optimal robot trajectory obtained from particle filter algo-
rithm in the first part.
Index Terms: SLAM, particle filter (PF), robot trajectory,
mapping, environment.

1. Introduction
SLAM is a widely used technique in the world of

robotics for localizing a loving robot and mapping an
environment simultaneously and it has seen significant
improvements over the past decades. In the present world,
it has numerous applications such as, in autonomous
driving, in self-localization of humans in indoor or outdoor
environments, personal robots for homes, cafes, for creat-
ing sparse or dense maps of an unknown environment, etc.
In our specific situation, we are given data from multiple
sensors which includes IMU data (that provides linear and
angular acceleration), encoder data attached to the robot
wheel (that provides wheel velocity). An obvious question
might be - we already have robot velocity and acceleration
data using which we can compute robot location at every
time steps and therefore its entire trajectory. Then why do
we need particle-filter SLAM (PF-SLAM) ?? The caveat
is that all these measurements have noise and therefore
without any estimation technique, the computed trajectory
might have large drift and noise. Therefore, particle-filter
SLAM alleviates this issue as it uses Bayes theorem to
combine observations from multiple sensors.

In this project, we are given multi-modal data from mul-
tiple sensors - encoder, IMU, 2-D LIDAR scanner - that are
attached to a differential-drive robot, and it is moving in
an environment. Using this data, we are required to esti-
mate the trajectory of the robot and simultaneously map the
environment. We perform particle-filter-based SLAM ap-
proach to achieve this objective. The particles are referred
to robot’s pose hypothesis in the world frame. The particle
filter has broadly these steps:

• We initialize the particle poses to (x, y, θ) = (0, 0, 0)
and assign equal weights to each particle.

• We predict particle’s poses at the next time-step using
differential-drive model of the robot. We add random
noise to each particle’s linear velocity and angular ve-
locity obtained from the encoder and IMU sensor re-
spectively.

• Using these predicted poses, we update the particle
weights by computing the correlation between the LI-
DAR observations based on each of these predicted
particle’s poses with the current environment map.
Higher the correlation between the predicted parti-
cle pose based observations and current map, higher
would be the assigned weight to that particle.

• We update the robot trajectory at current time step us-
ing the best particle pose which we have taken as the
particle whose LIDAR observations result in the high-
est correlation with current map. This step can be
thought of as localization.

• Finally, we update our map using the LIDAR obser-
vations transformed to the world coordinates using the
robot location at current timestep.

2. Problem Formulation
2.1. Particle-Filter SLAM

Some common notation used in this report:
T - total number of timesteps

x0:T - trajectory of the robot
z0:T - observations from the LIDAR scanner
u0:T−1 = [v0:T−1, ω0:T−1] - control input to the robot
w0:T - motion noise
v0:T - observation noise
xt+1 = fd(xt, ut, wt) - motion model of the differential
drive robot. In discrete time, the prediction of the next state
can be represented using -

xt+1 = fd(xt, ut) = xt+τt

vtsinc(ωtτt
2) cos(θt +

ωtτt
2)

vtsinc(ωtτt
2) sin(θt +

ωtτt
2)

ωt

(1)

zt = h(xt, vt) - observation model
m - occupancy grid map of the environment generated
using the LIDAR range observations
{µ[k], α[k]} k = 1, 2, ...N - particle hypothesis states
(2D x-y position and orientation θ) and particle weights

Starting from an initial robot state (x, y, θ) = (0, 0, 0) and
given the observations z0:T from the LIDAR scanner and
control inputs u0:T−1 measured using the encoder and IMU
sensor attached to the robot, predict the robot trajectory
x0:T based on robot’s motion model and simultaneously
create environment map using the LIDAR range measure-
ments and observation model.

PF Prediction Problem: Given prior robot state dis-
tribution at any time step t given by pt|t(xt) and
control input ut = [vt, ωt]

T , we need to estimate
the distribution of robot states for the next time step
pt+1|t(xt+1) = p(xt+1|z0:T , u0:T) and thus predict the
robot motion using the differential-drive motion model in
equation 1. In particle filter, we represent this distribution
using a PMF over discrete states.

pt|t(xt) =

N∑
i=1

αt|t[k]δ(xt − µt|t[k] (2)

PF Update Problem: Given a probability distribution
of states for next time step pt+1|t(xt+1) and a range
observation zt+1 from LIDAR scanner, we need to use the
observation model ph to obtain the updated distribution of
robot states pt+1|t+1(xt+1) = p(xt+1|z0:t+1, u0:t). Specif-
ically, we need to estimate the PMF weights αt+1|t[k] for
each particle given the updated particle states after every
predict step.

PF Mapping Problem: Given observations z0:t from
the LIDAR scanner and robot trajectory x0:t, we need to
compute a 2D occupancy grid map of the environment
mt that can represent free space, occupied space (ob-
stacles) and not visited space. Mathematically, estimate
p(mt|z0:t, x0:t,m0:t−1) at every timestep t.

2.2. Texture Mapping Problem

Given RGBD (RGB and disparity) images from the
Kinect RGBD camera I0:T , D0:T attached to the robot and
a robot trajectory x0:T estimated using the particle filter
SLAM, we need to estimate a 2D color map of the floor
surface on which the robot is moving.

3. Technical Approach
In this section, we describe in detail our approach to

solving the Particle Filter SLAM (PF-SLAM) problem
given multimodal data.

3.1. Data Processing:

The data from IMU, encoder and LIDAR scanner are
not time synchronized. In addition, their measurement fre-
quencies are different. To process them together, we first
matched the timestamps of IMU and LIDAR data with re-
spect to the encoder data. For each encoder timestamp, we
find the closest timestamp in the IMU and LIDAR times-
tamps and store their indices. We access IMU and LIDAR
data corresponding to these indices and use them for all fu-
ture purposes. Therefore, after this matching process, the
IMU and LIDAR data have the same number of samples as
the encoder data with closest matching timestamps.

3.2. LIDAR data conversion:

The LIDAR data is a scan range measurement (in meters)
over 1081 scan angles (for dataset 20) ranging from −135◦

to 135◦ (for dataset 20). We first convert these range mea-
surements from distances in meters to cartesian coordinates
(x, y, z) in the LIDAR frame. The LIDAR origin is taken as
the LIDAR geometric center with axes direction matching
the robot coordinate frame. Thus, in the robot frame, the LI-
DAR origin is at (x, y, z) = [133.23, 0, 514.35] mm. Next,
we convert these coordinates from the LIDAR frame to the
robot body frame. The robot origin is chosen as the geo-
metric center of the robot body in X-Y horizontal plane and
Z=0 is chosen to be the horizontal plane passing through
the wheel center. The robot axes directions are chosen as
follows: X - forward, Y - left, and Z - up. The same axes
direction is also chosen for the LIDAR frame and the world
frame as well. The world frame origin is the robot start-
ing position at t = 0. These cartesian coordinates trans-
formed from the LIDAR frame to the robot frame represent
3D points where the rays emitted from the LIDAR scanner
hits an obstacle. Due to measurement noise in the LIDAR
scanner, there is noise present in these cartesian coordinates
of the obstacles as well.

3.3. IMU data processing

The IMU sensor provides linear acceleration a0 : T , and
linear angular velocity (roll, pitch, and yaw angles). Since

Figure 1. Figure (on the right) shows the raw angular velocity
(yaw) with time measured using IMU sensor

the robot is moving in a 2D horizontal plane, we only con-
sider the yaw angle as relevant data to predict robot mo-
tion. Therefore, we have ignored the other measurements.
We also do not use linear acceleration in our computation.
We applied a low-pass Butterworth filter with a cut-off fre-
quency of 10 Hz to reduce measurement noise in the yaw
rate.

3.4. Encoder data processing

The encoder provides rotation counts for each of the 4
wheels at 40 Hz in this format - [Forward Right (FR), For-
ward Left (FL), Rear Right (RR), Rear Left (RL)]. We use
the following equations to compute the average velocities
for the right vR and left wheels vL and average them to get
the robot linear velocity v = vR+vL

2 where vR and vL are
given by -

vR =
0.5(FR+RR)πd

360τt
, vL =

0.5(FL+RL)πd

360τt
(3)

where d is wheel diameter = 0.254 m, τt is the time differ-
ence between successive encoder measurements provided
in the data.

3.5. Map Generation

For generating an occupancy grid map, we use LIDAR
range scan data. As described earlier, we convert obstacle
range data along 1081 scan angles to cartesian coordinates
in the LIDAR frame and then to the robot frame (RF). Next,
based on robot motion, we convert these coordinates in the
robot frame to the world frame (WF) using robot pose esti-
mated at each timestep. Therefore, if the robot SE(3) pose

in the world frame at time t is
[
WFRRF (t) WF pRF (t)

0T 1

]
then we convert the LIDAR observation synchronized at
timestep t from the robot frame to the world frame using:
XWF =WF RRF (t)XRF +WF pRF (t). Once we have the
LIDAR obstacle coordinates in the world frame, these rep-
resent the 3D points measured as obstacles by the LIDAR.
We create a 2D occupancy grid map that can represent
physical distances from −30m to 30m in the world frame
X-Y axes with map resolution being 0.05m. Thus, the map
size is 1201×1201. We use the Breeshenham Rasterization
algorithm to trace all the coordinate points in the map along

any ray starting from LIDAR and ending at an obstacle.
The breshenham algorithm takes the start and end points of
a ray and provides all the intermediate points along the ray.

We maintain a log-odds map λt of size 1201 × 1201
in which we add log(1/4) to all map cells along any ray
that are free. Otherwise, we add log(4) to the endpoint
along a ray that marks an obstacle or an occupied cell. We
do this process for all 1081 scan angles one-by-one and
update the log-odds map λt by adding log(1/4) for all the
free cells and log 4 to all occupied cells in the map. Then
we on to the next trajectory step and repeat this process.
At the end of the trajectory, we bound our log-odds map to
be strictly between some λmin = −100 and λmax = 50
(hyperparameters). Then we convert this 1201 × 1201
log-odds map to probability values using the softmax
operator representing the probability of a map cell being
free P (m[i, j] = free) = 1

1+exp(λt)
. Finally, we assign all

cells with probability > 0.5 as white free cells (1), all cells
with probability < 0.5 as black occupied cells (0), and all
cells with probability = 0.5 as gray (0.5) or not visited cell.

3.6. Particle-Filter SLAM

The particle filter algorithm uses particles µ[k] ∈ R3

that represents a potential robot state (2D position in X-Y
and orientation θ) and uses discrete weights α[k] for k =
1, 2, ..., N to represent the probability distribution pt|t and
pt+1|t as below.

pt|t(xt) =

N∑
k=1

αt|t[k]δ(xt − µt|t[k]) (4)

pt+1|t(xt+1) =

N∑
k=1

αt+1|t[k]δ(xt+1 − µt+1|t[k]) (5)

The particle filter algorithm is divided into two major steps:
Prediction and Update. Initially, we initialize all particles
state to (x, y, θ) = (0, 0, 0). In the prediction stage, we
predict the particle state at the next timestep (t+1) given
the current state using the differential-drive motion model
as described in equation 1. We add some random noise to
the measured linear and angular velocity (from encoder and
IMU yaw) to get random variation in each particle’s state.
Specifically, for every particle, we sample from N(0, σ2

v)
and N(0, σω2). We apply this to each particle µt|t[k] in
order to obtain µt+1|t[k] ∼ pf (.|µt|t[k], µt) and then we
approximate the probability distribution at next time step

using below equation:

pt+1|t(xt+1) =

N∑
k=1

αt|t[k]pf (xt+1|µt|t[k], µt)

=

N∑
k=1

αt|t[k]δ(xt+1 − µt+1|t[k])

Thus, the prediction step only changes the particle locations
and not their weights.

Next, we move on to the update step where we use
the particle states computed in the prediction step xt+1 to
update the particle weights α[k]. We use the LIDAR obser-
vations to compute correlation between each particle and
current map, and use it to update weights. We transform
the LIDAR scan from robot frame to world frame using
each particle’s pose estimated from the prediction step.
Then we compute the map correlation for each particle.
We add some noise perturbation to the particle’s state by
considering a m × m (m = 9 in our case) grid around
each particle’s XY position and assume the particle to
be in each of those grids. For each of those m2 particle
state perturbations, we transform the LIDAR obstacle
coordinates from robot frame to world frame. Then we
compute the correlation between the current occupancy
map and each of the scans by just adding the occupancy
map in each of those m2 locations across all scan angles.
The idea is that the best particle state among all particles
should most agree with the observations and existing map.
Therefore, for each particle, we get a m × m correlation
map, from where we take the highest correlation value. We
repeat this process for each particle.

Finally, we update the particle weights proportional to
each particle’s correlation value with the map using the
below equations -

αt+1|t+1[k] =
corr(yt+1[k],mt)αt+1|t[k]∑N
k=1 corr(yt+1[k],mt)αt+1|t[k]

(6)

After the update step, we choose the particle with the high-
est weight as the robot’s optimal state at current time step.
Finally, we update the occupancy map using this optimal
state using the process described in sec 3.5. After every
update step, we resample the particles if the number of ef-
fective particles Neff is less than a threshold (we took it
to be N/10 as given in the slides). For resampling, we do
weighted sampling from a pool of indices 1,2,...,N where
weights are the particle weights and N is the number of par-
ticles. For the chosen index j, we choose µt+1|t+1[j] as one
of the particle states. Then we repeat this process N times
to fully resample all particle states. After resampling, we
update all particle weights to 1/N.

4. Texture Mapping

In this problem, we are required to map the texture of
the floor surface given RGBD data from KINECT sensor
and optimal robot trajectory estimated using PF-SLAM
approach. We are given RGB images and disparity images
captured from KINECT camera attached to the robot.
Once again, the RGB and disparity images are captured
at different time instances and not time synchronized. To
synchronize them, for each RGB timestamp/image, we find
the closest timestamp in the disparity images and match
them together.

Next, due to x-axis offset between RGB and depth
camera (not in the same location inside KINECT sensor),
there is a correspondence mismatch between RGB and
disparity images. We find pixel correspondences between
RGB and disparity images using the equations provided in
the problem statement. That is, for each pixel (i,j) in the
disparity image with value d, corresponding pixel location
in the RGB image is given by -

dd = −0.00304d+ 3.31 (7)
rgbi = (526.37i+ (−4.5× 1750.46)dd+ 19276)/585.051

(8)

rgbj = (526.37j + 16662)/585.051 (9)

and corresponding depth value at pixel (i,j) is depth = 1.03
dd

We also ignore invalid pixel locations in the above com-
puted (rgbi, rgbj) which are outside the image bounds. Now,
that we know pixel correspondences between RGB and
depth image, we convert these pixel coordinates from pixel
coordinates to camera optical frame using the below rela-
tion. Xo

Yo

Zo

 = K−1

rgbirgbj
1

 ∗ depth (10)

where K is the camera intrinsic matrix provided in prob-
lem statement. Next, we convert from each pixel location
in camera optical frame to regular frame using the below
relation - Xr

Yr

Zr

 =

0 −1 0
0 0 −1
1 0 0

−1 Xo

Yo

Zo

 (11)

Next we transform these pixel coordinates from regular
frame to robot body frame using KINECT sensor pose in-
formation in robot frame. We use the roll, pitch, and yaw
angle of the Kinect sensor to get the rotation matrix and the
position of Kinect wrt the robot origin to get Kinect SE(3)
pose in robot frame. The KINECT origin position in robot

frame is RF pK = [167.66, 0, 380.01] mm.XRF

YRF

ZRF

 =RF RK

Xr

Yr

Zr

+RF pK (12)

Finally, we now have for each RGB pixel, the corresponding
3D point in the robot frame. We convert these to world
frame using the robot’s optimal trajectory estimated using
PF-SLAM algorithm.XWF

YWF

ZWF

 =WF RRF (t)

XRF

YRF

ZRF

+WF pRF (t) (13)

Next, we only consider those 3D points whose Z-
coordinates matches the floor surface. In my case, since
the Z=0 is taken to be horizontal plane passing through
robot wheel center, we only consider points whose 0.122 ≤
ZWF ≤ 0.132 m. We taken these points and convert them
to map coordinates similar to described in 3.5. Finally, we
put the RGB intensity value at pixel (rgbi, rgbj) in RGB im-
age to the map coordinates computed using [XWF , YWF].
Thus, we have our resulting floor texture map.

5. Conclusion
• In most experiments, I used number of particles to be

100 and ran the particle filter for 1 trajectory step.

• We get acceptable results for low noise standard devi-
ation. For σv = 0.01, 0.1, 0.5 and σω = 0.01, 0.05.

• Increasing noise standard deviation for angular veloc-
ity component σω ≥ 0.1 and for linear velocity σv ≥ 1
separates the particles too much from the current robot
pose and results in a very inflated environment map.

• We tried increasing the number of particles which re-
sulted in some improvements in the generated map but
it took almost double the amount of time as compared
to with N=100.

Figure 2. Figure showing the robot linear (computed using en-
coder) and angular velocity (from IMU) with time

Figure 3. Figure showing map of the initial (robot pose = (0,0,0))
LIDAR scan measurement where the center of the grid map cor-
responds to the XY-origin of world frame. White corresponds to
free space, black means occupied space, and gray represents space
not visited yet

6. Results - Dataset 20

figures/ds20/pfslam/map_pf_N1000_stdv0.5_stdw0.1.png

Figure 55. Figure showing final map after PF-SLAM with 1000
particles, σv = 0.5, σω = 0.1

Figure 57. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 1000 particles, σv =
0.5, σω = 0.1, step 2000

Figure 4. Figure showing the full map of the environment gener-
ated using (almost) all LIDAR scan measurements transformed to
world frame using robot trajectory. The robot trajectory (shown in
red) was generated using the differential-drive motion model with
0 noise

Figure 5. Figure (Left) showing a particle trajectory in the X-Y
plane with 0 noise added to linear and angular velocity σv = 0,
σω = 0. (Right) shows particle orientation variation with time

Figure 6. Figure (Left) showing a 10 particle trajectory in the X-Y
plane with σv = 0.1, σω = 0.01. (Right) shows particle orienta-
tion variation with time

Figure 7. Figure (Left) showing a 10 particle trajectory in the X-Y
plane with σv = 0.5, σω = 0.05. (Right) shows particle orienta-
tion variation with time

Figure 8. Figure (Left) showing a 10 particle trajectory in the X-Y
plane with σv = 1.0, σω = 0.1. (Right) shows particle orientation
variation with time

Figure 9. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 500

Figure 10. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 1000

Figure 11. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 1500

Figure 12. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 2000

Figure 13. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 2500

Figure 14. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 3000

Figure 15. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 3500

Figure 16. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 4000

Figure 17. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 4500

Figure 18. Figure showing final map after PF-SLAM with 100
particles, σv = 0.5, σω = 0.05

Figure 19. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 400

Figure 20. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 800

Figure 21. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 1200

Figure 22. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 1600

Figure 23. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 2000

Figure 24. Figure showing final texture map generated using op-
timal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05

Figure 25. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 500

Figure 26. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 1000

Figure 27. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 1500

Figure 28. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 2000

Figure 29. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 2500

Figure 30. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 3000

Figure 31. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 3500

Figure 32. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 4000

Figure 33. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.1, σω = 0.01, trajectory step 4500

Figure 34. Figure showing final map after PF-SLAM with 100
particles, σv = 0.1, σω = 0.01

Figure 35. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.1, σω = 0.01, step 400

Figure 36. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.1, σω = 0.01, step 800

Figure 37. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.1, σω = 0.01, step 1200

Figure 38. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.1, σω = 0.01, step 1600

Figure 39. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.1, σω = 0.01, step 2000

Figure 40. Figure showing final texture map generated using op-
timal robot trajectory from PF-SLAM with 100 particles, σv =
0.1, σω = 0.01

Figure 41. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 500

Figure 42. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 1000

Figure 43. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 1500

Figure 44. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 2000

Figure 45. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 2500

Figure 46. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 3000

Figure 47. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 3500

Figure 48. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 4000

Figure 49. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 1.0, σω = 0.1, trajectory step 4500

Figure 50. Figure showing final map after PF-SLAM with 100
particles, σv = 1.0, σω = 0.1

Figure 51. Figure showing map during PF-SLAM with 1000 par-
ticles, σv = 0.5, σω = 0.1, trajectory step 1000

Figure 52. Figure showing map during PF-SLAM with 1000 par-
ticles, σv = 0.5, σω = 0.1, trajectory step 2000

Figure 53. Figure showing map during PF-SLAM with 1000 par-
ticles, σv = 0.5, σω = 0.1, trajectory step 3000

Figure 59. Figure showing the robot linear (computed using en-
coder) and angular velocity (from IMU) with time

Figure 60. Figure showing map of the initial (robot pose = (0,0,0))
LIDAR scan measurement where the center of the grid map cor-
responds to the XY-origin of world frame. White corresponds to
free space, black means occupied space, and gray represents space
not visited yet

7. Results - Dataset 21

Figure 61. Figure showing the full map of the environment gener-
ated using (almost) all LIDAR scan measurements transformed to
world frame using robot trajectory. The robot trajectory (shown in
red) was generated using the differential-drive motion model with
0 noise

Figure 62. Figure (Left) showing a particle trajectory in the X-Y
plane with 0 noise added to linear and angular velocity σv = 0,
σω = 0. (Right) shows particle orientation variation with time

Figure 63. Figure (Left) showing a 10 particle trajectory in the
X-Y plane with σv = 0.1, σω = 0.01. (Right) shows particle
orientation variation with time

Figure 64. Figure (Left) showing a 10 particle trajectory in the
X-Y plane with σv = 0.5, σω = 0.05. (Right) shows particle
orientation variation with time

Figure 65. Figure (Left) showing a 10 particle trajectory in the
X-Y plane with σv = 1.0, σω = 0.1. (Right) shows particle
orientation variation with time

Figure 66. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 500

Figure 67. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 1000

Figure 68. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 1500

Figure 69. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 2000

Figure 70. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 2500

Figure 71. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 3000

Figure 72. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 3500

Figure 73. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 4000

Figure 74. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.05, trajectory step 4500

Figure 75. Figure showing final map after PF-SLAM with 100
particles, σv = 0.5, σω = 0.05

Figure 76. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 400

Figure 77. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 800

Figure 78. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 1200

Figure 79. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 1600

Figure 80. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05, step 2000

Figure 81. Figure showing final texture map generated using op-
timal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.05

Figure 82. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 500

Figure 83. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 1000

Figure 84. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 1500

Figure 85. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 2000

Figure 86. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 2500

Figure 87. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 3000

Figure 88. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 3500

Figure 89. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 4000

Figure 90. Figure showing map during PF-SLAM with 100 parti-
cles, σv = 0.5, σω = 0.1, trajectory step 4500

Figure 91. Figure showing final map after PF-SLAM with 100
particles, σv = 0.5, σω = 0.1

Figure 92. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.1, step 400

Figure 93. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.1, step 800

Figure 94. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.1, step 1200

Figure 95. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.1, step 1600

Figure 96. Figure showing texture map generated using opti-
mal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.1, step 2000

Figure 97. Figure showing final texture map generated using op-
timal robot trajectory from PF-SLAM with 100 particles, σv =
0.5, σω = 0.1

	. Introduction
	. Problem Formulation
	. Particle-Filter SLAM
	. Texture Mapping Problem

	. Technical Approach
	. Data Processing:
	. LIDAR data conversion:
	. IMU data processing
	. Encoder data processing
	. Map Generation
	. Particle-Filter SLAM

	. Texture Mapping
	. Conclusion
	. Results - Dataset 20
	. Results - Dataset 21

