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1. Problem Statement

The objective of this project is to accurately estimate the
6D poses (position and orientation) of a monocular cam-
era moving in an environment. We present an approach
for visual pose estimation using the Structure from Motion
(SfM) technique with temporally constrained frame match-
ing and semantic assistance in the context of autonomous
driving scenarios. We address the challenge of pose esti-
mation in dynamic scene environments, which can intro-
duce errors due to incorrect matching in the reconstruction
of 3D scenes and the estimated trajectory using the SfM
algorithm. Specifically, we use visual data from outdoor
driving scenarios such as the KITTI dataset [2] to evalu-
ate our approach since accurate estimation of the car’s pose
in dynamic environments is crucial for autonomous driving
applications. Our method contributes to this field by provid-
ing reliable and precise car pose information, thus advanc-
ing the development of autonomous driving systems.

2. Method Description

We improve upon the Pixel-Perfect SfM [3] pipeline,
a keypoint-based approach for reconstructing sparse 3D
structure from image observations. Most SfM algorithms
utilize keypoints extracted from images to perform match-
ing and estimate the camera pose and 3D world points.
However, in dynamic environments, estimating camera
poses and scene structure is challenging due to incorrect
matching caused by dynamic keypoints from objects such
as cars, vehicles, people, and riders. Here, dynamic class
objects can be moving objects or objects that can move (e.g.,
stationary cars and people). To address this issue, we incor-
porate HRNet [4], an off-the-shelf semantic-segmentation
model, into the SfM pipeline. HRNet enables the segmen-
tation of dynamic objects, allowing us to exclusively uti-
lize static world points for pose estimation. Additionally,
the Pixel-Perfect SfM pipeline performs exhaustive frame
matching using all images, which is redundant for driv-
ing scenarios since distant frames have a low probability
of sharing common world points. In contrast, we introduce
a temporal constraint that selectively uses nearby past and

future frames. This constraint significantly reduces com-
putational requirements and improves tracking accuracy by
eliminating matching with far-away frames. Our approach
outperforms the Pixel-Perfect SfM [3] baseline when eval-
uated against the KITTI 360 benchmark dataset [2]. We
achieve a 97.8% improvement in localization accuracy and
reduce the overall processing time by approximately 25
minutes.

Figure 1. Figure showing our camera pose estimation pipeline.

2.1. Dynamic Segmentation using HRNet

We utilize hierarchical multi-scale attention mechanisms
for efficient segmentation and identification of dynamic ob-
jects. This approach efficiently leverages multi-scale image
information by introducing a hierarchical attention mod-
ule as shown in Figure 2. The module operates on feature
maps from various convolutional neural network (CNNs)
levels, capturing contextual dependencies across scales. It
combines global and local contextual information to im-
prove object understanding and discrimination based on
size and shape. The hierarchical attention module employs
both top-down and bottom-up attention mechanisms to iter-
atively refine feature representations. The top-down mech-
anism aggregates high-level contextual information, while
the bottom-up mechanism captures fine-grained details. To
accomplish this, we employ an HRNet model pretrained on
the Cityscapes road dataset [1].

Following the semantic segmentation using HRNet on
each frame, we proceed to identify and exclude keypoints
associated with dynamic objects to ensure accurate pose es-
timation. Specifically, we exclude keypoints belonging to
the following dynamic classes: Cars, vehicles of all types,
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Figure 2. Figure showing Hierarchical attention architecture. In-
ference is performed in a hierarchical manner to combine multiple
scales of predictions. Lower scale attention determines the contri-
bution of the next higher scale. (source: [4])

Figure 3. HRNet segmentation results on Cityscapes dataset - Left:
Raw Images, Middle: Ground-Truth segmentation, Right: HRNet
segmentation (source: [4])

Pedestrians, Persons, and Cyclists. By removing these key-
points from consideration, we enhance the reliability and
accuracy of our pose estimation and point cloud reconstruc-
tion process.

2.2. Pixel-Perfect Structure from Motion (SfM)

The basic steps of the SfM pipeline include:

• Feature Extraction
• Keypoint Matching
• Reconstruction
• Bundle Adjustment

Keypoint matching is a core component of the SfM
pipeline and sparse features are preferred for their efficiency
and robustness. The process involves detecting a small
number of interest points, computing their visual descrip-
tors, matching them with nearest neighbor search, and veri-
fying the matches with two-view epipolar geometry and the
RANSAC algorithm. SfM assumes that the sparse interest
points can be reliably detected across views. It selects the
features (typically corner points) for each image indepen-
dently and relies on them for the rest of the reconstruction
process. Since the keypoints are independently detected,
they aren’t localized properly as can be seen in Figure 5.
Hence, during bundle adjustment the reprojection error is

Figure 4. Figure showing the Pixel-Perfect SfM pipeline which
performs a two-stage adjustment of keypoints and bundles. The
approach first refines the 2D keypoints only from tentative matches
by optimizing a direct cost over dense feature maps. The second
stage operates after SfM and refines 3D points and poses with a
similar featuremetric cost. (source: [3])

minimized w.r.t an erroneous keypoint and this error propa-
gates through the entire SfM pipeline.

Figure 5. Figure shows points refined with pixel perfect SfM (in
green) are consistent across multiple views while those of a stan-
dard SfM pipeline (in red) are misaligned because the initial key-
point detections (in blue) are noisy.

The Pixel-Perfect SfM improves the entire SfM pipeline
by a two step refinement process. Given the constraints pro-
vided by the coarse but global correspondence or initial 3D
geometry, it is sufficient if the dense information is only lo-
cally accurate and invariant. Thus, we make use of CNNs
which exhibit high invariance by capturing large contexts
and retain fine local details. The utilization of such deep
features replaces the geometric bundle and keypoint adjust-
ments with their feature-metric counterparts. The refine-
ment process first adjusts the keypoints prior to any geo-
metric estimation and subsequently refines points and cam-
era poses as post-processing.

• Featuremetric Keypoint Adjustment : The first
step of the process is to perform track separation. Ten-
tative tracks are given by the connecting components in
the matching graph. The elements in a track observe the
same 3D point from different views. Since, there can only
be a single projection for the 3D point on a given image
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Figure 6. The figure displays the remaining static keypoints (in
blue) obtained by passing a frame through the dynamic segmenta-
tion module and excluding the dynamic keypoints.

plane we can eliminate the tracks that have multiple key-
points detected on the same image. This step speeds up
the optimization and reduces the noise in estimation. The
locations of the 2D keypoints belonging to the same track
j are adjusted by optimizing the feature metric consis-
tency along tentative matches with the cost:

Ej
FKA =

∑
(u,v) ϵ M(j)

wuv∥Fi(u)[pu]− Fi(v)[pv]∥γ (1)

where wuv is the confidence of the correspondence be-
tween (u, v). This allows the optimization process to split
tracks that are connected by weak correspondences. Due
to the lack of geometric constraints, the points are free to
move around in the 3D scene in order to prevent this drift
the keypoint with the highest connectivity is fixed and the
locations of the other keypoints pu are constrained w.r.t
its initial detection p0u such that ∥pu − p0u∥ ≤ K. After
all tracks have been refined we proceed to geometric es-
timation and SfM. Despite the sheer number of tentative
matches this implementation is quite fast in practice.

• Featuremetric Bundle Adjustment : The key-
points here are the projections of the 3D points into the
2D image. For the optimization a reference appearance
is defined as the observation closest to the robust mean µ
over all initial observations f j

u of the track and is given
by:

f j = argminfϵ{fj
u}∥µ

j − f∥ (2)

µj = argminµϵRD

∑
fϵ{fj

u}

∥f − µ∥γ (3)

Then we minimize for each track j the difference between
the projection and the reference for that track:

EFBA =
∑
j

∑
(i,u) ϵ τ(j)

∥Fi

[∏
(RiPj + ti, Ci)

]
−f j∥γ

(4)
This provides resistance to outliers and accounts for the
unknown topology of the feature space.

2.3. Temporal Matching Constraint

The approach used in Pixel-Perfect SfM [3] estimates
camera poses and generates a sparse 3D map using exhaus-
tive bundle adjustment by optimizing over all image obser-
vations. However, since we are using it for estimating poses
in driving scenarios, where frames are sequentially related,
we introduce a temporal constraint on keypoint and bundle
adjustment. This constraint performs feature matching be-
tween a current frame and K neighboring past and future
frames. The rationale behind enforcing this constraint is to
use local contextual frame information which also reduces
erroneous matches between far-away frames that are very
unlikely to share common 3D points.

3. Experiments and Results
3.1. Dataset

In our experiments, we conducted a careful selection of
a driving scenario and utilized challenging sequences from
the KITTI 360 benchmark dataset [2]. Our objective was
to evaluate and compare the pose estimation and tracking
accuracy of our approach in the presence of dynamic ob-
jects, which encompassed cars, riders, people, and other ve-
hicles. To present our findings, we focused on test sequence
00 from the KITTI dataset. Due to compute limitations,
we selected a subset of 411 consecutive frames (from frame
2130 to frame 2540) from test sequence 00. This subset was
chosen to ensure the inclusion of dynamic objects, as well
as variations in camera movement such as straight paths and
U-turns.

3.2. Results

In order to evaluate and compare our method, we begin
by estimating the scale factor using ground-truth IMU data.
Since monocular camera-based pose estimation lacks scale
information, we rely on the IMU data to estimate scale.
This scale estimation is then integrated into our estimated
poses and 3D point cloud. To assess the accuracy of our
estimated poses, we employ the absolute translation error
(ATE) metric and compare it to the ground-truth poses pro-
vided by the KITTI dataset. To evaluate the performance of
our approach, we conduct an ablation study that considers
different configurations: the baseline model, the addition
of a temporal constraint, and the inclusion of semantic in-
formation with the temporal constraint. The results of this
study are presented in Table 1.

Our method, which incorporates temporal constraint
and dynamic object segmentation, outperforms the baseline
SfM system and achieves comparable results to state-of-the-
art methods in pose estimation on the KITTI dataset. The
reduction in processing time is primarily attributed to the
use of selective frame matching, as opposed to the exhaus-
tive frame matching described in the Pixel-Perfect SfM [3]
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Figure 7. A comparison of ground-truth trajectory (in red) and estimated trajectory (in green) is presented. The left corresponds to the
baseline PixSfM model, the middle represents the PixSfM model with temporal constraint, and the right showcases the PixSfM model with
both temporal constraint and semantic segmentation.

Method ATE (in m) Time (in mins)
Baseline 22.7819 31.47
Baseline + Temporal 0.6351 11.54
Ours 0.4801 6.13

Table 1. Table showing quantitative results. Our method outper-
forms the baseline Pixel-Perfect SfM by a considerable margin in
terms of both accuracy and processing speed.

paper.

4. Conclusion and Future Works
In conclusion, this research report presents an approach

for temporally constrained pose estimation incorporating
semantics in driving scenarios. Our approach incorporates
dynamic scenes by using the HRNet network for accurate
image segmentation and identifying dynamic objects, and
exclusively utilizing only static world points for pose es-
timation. We also introduce a selective usage of nearby
frames based on a temporal constraint to enhance localiza-
tion accuracy while reducing computational requirements.
The method contributes to autonomous driving by provid-
ing reliable and precise car pose information. Experiments
on the KITTI dataset demonstrate promising results, with
lower absolute translation error (ATE) values compared to
the baseline Pixel-Perfect SfM algorithm. Overall, this re-
port offers an improved approach for accurate and efficient
car pose estimation in dynamic environments, advancing
autonomous driving systems.

The SfM pipeline estimates poses and a sparse point
cloud using prominent keypoints extracted and refined
through the Keypoint adjustment process. To transform the
sparse road point cloud into a dense point cloud, we fit a
plane to these points, as demonstrated in Figure ??. Al-

though additional improvements can be made to enhance
the accuracy of the dense point cloud by utilizing geometric
constraints, such enhancements require computational ca-
pacity that is currently unavailable. Consequently, we leave
these possibilities for future work.

Figure 8. Figure showing the dense road mesh reconstructed from
3D sparse point cloud using geometric constraints.
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