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Abstract

This research presents a self-localization method aimed at localizing and navigating a human worker in
a prebuilt map of a target environment using the technology of visual-inertial SLAM (Simultaneous Lo-
calization and Mapping) framework. We aim to create a tool in the form of an easy-to-use smartphone
application which can be used by a human worker for navigation in a factory-based environment. Most
of the existing traditional SLAM methods are based on the assumption of static-based environments. We
include deep learning based object detection and segmentation module to improve the performance of
visual SLAM in real-world environment (with moving people, objects, etc). Using dynamic segmentation
module in the visual SLAM pipeline mitigates the effects of dynamic moving objects in the environment
and improves the tracking accuracy as well as makes the environment map more stable and re-usable for
long-term applications. Through our experiments, we provide comparison between the performance of
our approach and traditional SLAM framework on public datasets and validate that using dynamic object
segmentation improves visual SLAM accuracy and robustness in localization performance in real-world
environments.
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1 Introduction

1.1 Motivation and Objective

In the manufacturing sector, the retirement of the expert workers and labourers who have been supporting
the strong industry for so many years is a cause of grave concern for the future. We strongly need technol-
ogy in the form of robotics and automation to support human workers. Hitachi has been at the forefront in
tackling this social issue and has been developing various systems for supporting human workers. One of
these areas which requires some attention is easy-to-use digitized localization and navigational facilities for
novice workers in factories and warehouses. Expert workers are being retired and this leads to requirement
of new non-expert workers who are not very much familiar with working environments and locations. In
the future of industries and factories, most tasks are expected to be carried out by robots instead of human
workers. These human workers might be required for various tasks at multiple locations. It might be diffi-
cult for a new human worker to become familiar with the details of multiple different locations in terms of
checking and maintenance.

In order to address this challenge, we are trying to create a localization and navigational application using
the technology of visual-inertial SLAM. Human workers generally have smartphone or cameras which can
provide visual image sequences. This image sequence can then be processed using a smartphone applica-
tion. The key idea is to have a map for all the target locations (created using SLAM technology as a part
of initial setup). When a human worker wants to localize himself or needs a navigational help in a factory,
they can load the map specific to the factory or location. The localization algorithm can then estimate and
provide the location of the human worker using the visual data and the inertial-measurement-unit (IMU)
data from the smartphone.

The traditional SLAM approaches are based on the assumption of static environment. Thus, in dynamic
environment (dynamic moving objects), these approaches will perform less accurately. Due to the presence
of dynamic objects, the localization of the camera becomes less accurate. In addition to this, the environ-
ment map created with the static approach will include the erroneous map points from the dynamic objects
which, in turn, increases the error in the system during localization and navigation. Therefore, by includ-
ing dynamic segmentation module, this research helps to improve the localization accuracy in real-world
environments.

1.2 Progress in research

We verified the feasibility of the SLAM technology for human localization and navigation in the factory, and
we got some prospect of realization of this technology in Kenkyu Kaihatu shien: R&D support fund (last year)
from HISYS. We are looking for business needs of this technology and customers through demonstrations
and conference presentations.

1.3 Research Targets

The research targets for this project can be summed up in following points:

1. To develop a technology for self-location estimation using video for human workers in factory envi-
ronment

2. To improve the localization and mapping performance of SLAM in dynamic real-world environments

3. To create a smartphone application for demonstrating the localization and navigational use of this
technology targeted as a helping tool for human workers in factories
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2 Related Work

2.1 Visual SLAM

Visual SLAM has drawn the attention of researchers over the past decade because of its application in
robotics and automation. Monocular SLAM was initially solved by filtering [1], [2] every frame in order to
jointly estimate the map feature locations and the camera pose. On the other hand, currently used keyframe-
based approaches estimate the map using only certain important and non-redundant frames (keyframes)
which allows the system to perform more costly but accurate bundle adjustment optimizations. Strasdat et
al. [3] demonstrated that keyframe-based techniques are more accurate than filtering for nearly the same
computational cost. The PTAM [4] introduced for the first time two parallel threads for visual SLAM frame-
work: tracking and mapping. This became the benchmark as well as fundamental baseline for various future
SLAM-based techniques.

Visual SLAM can be classified into feature-based and direct methods. Feature-based methods rely on salient
keypoint matching and can only estimate a sparse or semi-dense reconstruction of the environment, whereas
direct methods estimate, in principle, a fully or semi-dense map by minimization of the photometric error
directly over image pixels [5], by exploiting the brightness information of all the image pixels. In the cat-
egory of direct SLAM based methods, LSD-SLAM [5] can build large-scale semi-dense maps but they do
not perform loop detection and the camera localization accuracy is significantly lower compared to current
state-of-the-art feature-based methods. The direct based method saves computing resources in tracking
and feature matching, however, the insensitivity to features is a fatal weakness for its use in practical SLAM
applications. Direct methods are, in general, more sensitive to dynamic objects in the scene.

Feature points are essential in order to build a complete and robust SLAM framework. Feature extraction
and matching ensures the accuracy of camera pose estimation in the SLAM tracking. Feature-based method
can extract more effective information from visual images, such as semantics, object recognition, feature lo-
calization, etc. ORB-SLAM [6] proposed by Mur-Artal et al., is one of the fundamental and successful SLAM
techniques based on the feature tracking method. It can enable the system to run for a long time under large
scenes and large loops, thus ensuring the global consistency of the trajectory and the 3D map. Though one
of the shortcomings of ORB-SLAM is in dealing with dynamic environments.

Dynamic objects are classified as spurious data in SLAM and therefore should not be included in the map
as well as should not be used for camera pose estimation. SLAM in dynamic environments has always been
challenging because traditional SLAM theory and vast majority of existing approaches assume a static envi-
ronment. Its challenges mainly come from two aspects: first, it is difficult to define a dynamic object from
planar pixel and secondly dynamic objects are not easily detected and tracked. For dealing with dynamic
environments, there have been a few exciting approaches in recent years. Chen et al. [7] and CD-SLAM [8]
proposed by Picker et al are few of the earlier approaches trying to deal with this issue. Dynamic SLAM [9]
uses SSD object detection framework [10] for detecting potential dynamic objects in an additional thread.
The object detection thread produces bounding-boxes around detected dynamic objects. This information
is further forwarded to ORB-SLAM framework for tracking and mapping. One possible limitation of this ap-
proach is that bounding boxes around a dynamic object may also include additional portion of the scene
which might contain useful feature points. Although one major advantage is that current state-of-the-art
detectors such as YOLO [11] or SSD [10] can perform in real-time with acceptable accuracy.

2.2 Object Detection and Segmentation Framework

Recent advances in object detection and semantic segmentation methods based on CNN have led to many
breakthroughs in numerous real-life problems. The object detection networks headed by R-CNN [12], such
as SPP-Net [13], Fast R-CNN [14], Faster R-CNN [15] etc., use CNN to automatically learn features and avoid
the limitation of designing manual features. Although these methods have high precision, it is very time-
consuming because candidate frame extraction and object recognition are performed in two separate steps.
Lots of approaches based on fully convolutional network (FCN) [16] have achieved state-of-the-art perfor-
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mance on different benchmarks of the semantic segmentation task. In this domain, Mask R-CNN [17] based
on Faster R-CNN with an additional overhead network specially designed for segmentation, provides great
results in terms of accuracy but its speed limitation is an issue. He et al. [17] report that MaskRCNN runs at
195 ms per image (∼ 6 fps) on a NVIDIA Tesla M40 GPU.

3 Research Method

With the help of this research, we aim at solving two main challenges: firstly, we want to provide navigational
help to human workers in factories using a smartphone application. Secondly, we aim towards improving
traditional visual SLAM system which are mainly based on the assumption of static environment scenarios.
Tackling the second part, we work with an existing visual SLAM module - OpenVSLAM [18] as the base-
line and improve its localization performance by specifically dealing separately with dynamic (or moving)
objects in the scene. Our system consists of a CNN-based dynamic object segmentation module which per-
forms pixelwise image segmentation on each and every incoming frame and outputs a binary mask image
detecting the pixels belonging to any of the predefined dynamic object categories (such as people, vehicles,
etc.) in the frame as shown in Fig. 1. Each incoming video frame is also passed through a feature extraction
module which extracts a set of keypoint features. These set of keypoints and detected dynamic object binary
masks are forwarded to the visual SLAM module [18] which estimates the camera pose (position and orien-
tation of the camera at the time of capturing of current frame) and simultaneously constructs the 3D map
of the environment visible to the camera. The core idea behind performing image segmentation is to iden-
tify and mitigate the effect of dynamic moving objects in the scene, if any. In our case, we accomplish this
by rejecting all the keypoints that belong to detected dynamic objects in the scene so that these keypoints
are neither used in estimating the camera pose nor for creating the 3d map of the environment. Thus, this
approach tends to use only those keypoints that potentially belongs to static objects in the scene. Contrary
to our approach, most traditional visual SLAM approaches (which are based on static scene assumption)
[4], [6], [5] only extract keypoints from each incoming frame followed by estimating the camera pose and 3D
environment map, without explicitly tackling the issue of dynamic objects in the scene.

Figure 1: System Overview of our approach: Incoming frames from monocular camera serve as the input data to the
semantic segmentation module and the visual SLAM module. The output of semantic segmentation module is passed to
the SLAM module which estimates the camera pose of every frame as well as constructs the 3D map of the environment

Our system mainly involves three threads that simultaneously run in parallel: tracking, mapping and global
optimization thread as shown in Fig. 2. All these threads run in an asynchronous manner. The tracking
module is responsible for localizing the camera by estimating its pose (position and orientation) with every
incoming frame. It also takes the decision on whether a frame should be qualified as a keyframe (important
and relevant frames) or not (based on certain conditions). Any frame marked as keyframe by the tracking
module is passed on to the mapping and global optimization modules as they only process keyframes rather
than all the frames. The mapping module involves estimation of 3D landmark positions with respect to
world coordinate system (WCS) using only the keyframes. The global optimization thread performs multiple
tasks sequentially: Firstly, it jointly optimizes the estimated camera poses and 3D map points using bundle
adjustment (BA) technique [19]. Secondly, this thread checks for any potential loops (when camera returns
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Figure 2: Thread Structure in our visual SLAM approach: Tracking thread involves feature extraction, dynamic object
detection, followed by camera pose estimation. Mapping thread constructs environment 3D map. Global optimization
thread performs overall joint optimization of estimated poses and 3D points

to a previously visited location) in the overall camera trajectory. If any potential loop is detected, this module
closes the loop by minimizing the accumulated camera pose error in the loop frame sequence.

3.1 Feature Extraction Module

Each incoming frame is passed through a feature extraction module. We have used ORB features [20] (Ori-
ented Multiscale FAST corners [21] and Rotated BRIEF [22]) associated with a 256-bit binary descriptor. ORB
features are rotation invariant and have good invariance to viewpoints. But the major advantage of using
ORB features is extraction speed as it takes roughly ∼ 16 ms for an image size of 640×480, which is at least
one order of magnitude faster compared to other popular feature extractors such as SIFT (∼ 5000 ms) [23],
SURF (∼ 300 ms) [24], or the recent A-KAZE (∼ 100 ms) [25].

3.2 Potential Dynamic Content Segmentation using CNN-based network

For detecting dynamic objects, we propose to use a CNN-based network that obtains a pixelwise semantic
segmentation of the incoming frames. For segmentation classes, we predefine a set of 20 common occur-
ring dynamic class objects - [person, different kinds of vehicles, some common animals] and a separate class
- background for denoting the static objects in the scene. As we are aiming to perform localization in factory
environment setup, the dynamic class objects would mostly include humans, vehicles, etc. which has been
covered by our predefined set. The semantic segmentation network takes an incoming frame and produces
an output frame (same size as input frame) with the pixels detected as belonging to dynamic classes in the
predefined set semantically labelled while the rest of the pixels are labelled as background. We further clas-
sify all the pixels in this semantically segmented output into two classes - static and dynamic. Therefore, the
final output of this segmentation module is a binary mask separating the static and dynamic objects.

In our experiments, we use two popular semantic segmentation networks - Mask RCNN [17] and BiSeNet
[26] - and compare their performances in terms of overall accuracy and execution speed of visual SLAM.
Mask RCNN can obtain the semantic segmentation and instance labels (although for our purpose we only
require semantic segmentation) whereas BiSeNet is only capable of semantic segmentation. The output of
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the segmentation module, assuming that the input is an RGB image of size m ×n × 3, is a binary mask of
size m ×n consisting of the segmentation of detected dynamic objects appearing in the scene. In order to
improve the segmentation results and to include the edges of dynamic objects in the mask, we use dilation
(with window size= 5) of the segmented binary masks.

3.3 Camera Pose Estimation

After the potential dynamic content has been detected and segmented from the frame, the camera pose is
tracked using keypoint features from only the static part of the image. Each frame is further passed to the
feature extraction module which extracts ORB keypoints. The number of features extracted depends on the
image size as well as computational capability of the computing device. For a typical image size of 640×480,
we extract nearly 1000 ORB feature points. For higher image resolution, more number of feature points can
be extracted.

For each frame, a prior camera pose is estimated using a constant camera motion model (based on the as-
sumption that the camera movement between current and last frame is same as between the previous two
frames). In case IMU data in the form of acceleration is available from the device performing SLAM (such
as smartphones, etc.), filtered version of the raw IMU data can be integrated with the prior camera pose for
better performance. However, in our case, raw (unfiltered version) IMU data is very noisy and sometimes it
caused large deviation in the posterior camera pose. Therefore, we have not used IMU data for estimating
camera pose in our experiments. Using the prior camera pose, already existing 3D landmark map points
are projected into the frame. These projected points in the current frame are searched for the most suit-
able nearby ORB feature point. Once a certain number of successful correspondence between nearby ORB
features and projected 3D landmark points is obtained, the prior camera pose is optimized using 2D-3D
PnP algorithm [27] as shown in Fig. 3. The initially obtained camera pose is optimized again using a set

Figure 3: Major steps for camera pose estimation: ORB features extracted from each incoming frame, 3D map points
projected using prior pose and searched for the nearest ORB feature followed by pose optimization using PnP algorithm

of more prominent feature matches between current frame and frames in a local map. The local map in-
cludes a set of keyframes K1 which share 3D map point observations with current frame and another set of
keyframes K2 connected to keyframe set K1 in the covisibility graph [28] (an undirected weighted graph of
all the keyframes as node and edges between them if they share common observations of 3D map points).
All the 3D map points observed in this set of local map of keyframes is projected in the current frame using
the estimated pose. The same procedure is followed again by finding suitable nearby ORB features in the
current frame. Using these extra set of matching 2D features - 3D landmark points, the camera pose is fur-
ther refined.

The tracking thread is also responsible for deciding whether the current frame qualifies to be a keyframe
based on certain conditions mentioned here [6]. Once a frame passes all the conditions to be a keyframe, it
is passed on to the mapping and optimization thread which solely process only on keyframes rather than all
frames.
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3.4 Mapping Module

The mapping thread is responsible for processing new keyframes sent to it by the tracking thread and per-
form local bundle adjustment in order to achieve an optimal 3d map reconstruction in the neighbourhood
of current frame location. After receiving the keyframe, it updates the covisibility graph, adding a new node
for the current keyframe and updates its graph edges based on common map point observations with other
keyframes. The mapping thread estimates new map points (if any, in the current keyframe) by triangulating
ORB keypoints from connected keyframes in the covisibility graph as shown in Fig. 5. There are situations
when wrong 3D points are triangulated due to feature matching errors and wrong feature associations. In
order to ensure that newly triangulated 3D points are trackable, the mapping thread imposes certain re-
strictive conditions on these newly created points. If and when a certain 3D point fails to fulfill these con-
ditions, they are rejected from the map. The local bundle adjustment optimizes the currently processed

Figure 4: Major steps in the mapping module: processes only keyframes, estimates new undiscovered 3D map point in
the scene, removes redundant untrackable map points and keyframes, and optimizes poses and map points of keyframes
in local environment to current keyframe

Figure 5: Figure demonstrating a set of keyframes and creation of new map points visible and undiscovered in the
current keyframe

keyframe, all the poses of the keyframes connected to it in the covisibility graph, and all the map points seen
by those keyframes. All other keyframes that see those points but are not connected to the currently pro-
cessed keyframe are included in the optimization but remain fixed. In order to maintain a compact map rep-
resentation, this thread tries to detect redundant keyframes and remove them. This is beneficial as bundle
adjustment complexity grows with the number of keyframes added to the map, but also because it enables
lifelong operation in the same environment as the number of keyframes will not grow unbounded, unless
the visual content in the scene changes. All the major steps performed by this thread have been shown in a
sequential manner in Fig. 4.
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3.5 Loop Detection and Closure

A loop in this context refers to trajectory camera sequence where the starting and end points of the sequence
belong to the same environment. The optimization module first needs to search for any potential loops with
every incoming keyframe and if detected, close them by minimizing the accumulated pose drift error along
the loop. Briefly describing the loop detection and closing process as portrayed in Fig. 6, firstly, each incom-
ing keyframe is converted to bag-of-words (BoW) vector [29]. Using this BoW vector, the system searches
for the most similar keyframe to current keyframe by comparing the BoW vector of all the keyframes in the
keyframe database. If a similar candidate match is found in the database, it is considered as a loop candidate
for the current keyframe. Once loop detection is done, the loop needs to be closed as it provides an oppor-

Figure 6: Flowgraph of the loop detection and closure process: each incoming keyframe is converted to BoW vector
using which the most similar keyframe in the database is searched. If found, the loop is closed minimizing the accumu-
lated drift error along the loop camera poses

tunity to mitigate the accumulated pose drift error along the loop trajectory sequence. In order to close the
loop, the graph of camera poses from current to loop candidate keyframe is optimized by computing a simi-
larity transformation between consecutive keyframes in the loop and minimizing the residual error between
consecutive poses with the objective of distributing this error along the graph as shown in Fig. 7.

Figure 7: Left: Residual error between camera poses i and j defined as similarity transformation as well as the minimizing
function using the residual error. Right: demonstration of computing similarity transformation along the loop from
current keyframe KC F to loop candidate keyframe KLF

Finally, the entire research method combining all the three modules - tracking, mapping and optimization -
that we propose to use for our final smartphone application has been presented in Fig. 8. In this figure, we
have included the idea of using GPS information available from smartphone for getting the coarse location
of the device performing SLAM which can be used for automatically detecting the correct stored map when
the user starts the application.
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Figure 8: Block diagram of our entire visual-inertial SLAM module for localization of human workers: Three threads -
tracking, mapping, optimization.

3.6 Re-Localization and Navigation

Re-Localization refers to a situation when the tracking module is unable to estimate the current camera
pose. This can happen due to various factors - 1. texture-less scenes (such as plain walls) leading to small
number of features available for matching and optimization 2. abrupt and sudden camera movement can
cause little to no features common between current and previous frames as well as local keyframes resulting
in inaccurate matching. Thus, in these cases, the normal way of estimating camera pose does not works and
the system has to perform place recognition (similar process to loop detection) for finding the camera pose.

Our main objective in this research is navigation of human workers in order to help them to get from one
place to another in a factory. This requires a pre-built map of the environment in which the user can localize
himself as well as navigate to their target location. The pre-built map of one particular area or factory is a
one-time initial setup activity and has to be created in advance using the visual-inertial SLAM technique
discussed in above sections and demonstrated in Fig. 8. When the user wants to localize himself or get
navigational help, they can manually select the stored map corresponding to that factory-setup or this can
automatically be done using the GPS location of the user. Once the user starts to move, the system will
initially perform place recognition by finding the most similar keyframe in the map keyframe database to
the current frame by comparing their BoW vectors (similar to loop detection process described in Fig. 6).
The initial time taken for matching depends on the map size and also on whether the query location or
scene has been visited in the map or not. A successful matching and localization for a map-size of ∼ 1200
keyframes takes nearly 4-5 seconds. After an initial match has been found using place recognition process,
the system will continue tracking the person using just the tracking module and optimization module in
Fig. 8. It is important to note that the mapping module is not required in the scenario of localization and
navigation as the map is already available.
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Figure 9: Demonstration of the self-localization application for human workers

4 Evaluation Metrics

A SLAM system generally outputs the estimated camera trajectory along with an estimate of the resulting
map. While it is in principle possible to evaluate the quality of the resulting map, accurate ground truth
maps are difficult to obtain. Therefore, the quantitative performance of any SLAM-based system is evalu-
ated by the quality of the estimated trajectory. It should be noted that a good trajectory does not necessarily
imply a good map, as for example even a small error in the map could prevent the system from functioning
properly in the environment and may also lead to tracking failure.

For the evaluation of SLAM tracking and localization, we use two common evaluation metrics introduced by
Engel et. al in [30]. We assume the sequence of poses obtained from the estimated trajectory as P1, ...., Pn ∈
SE(3) and those obtained from the ground truth trajectory as Q1, ... , Qn ∈ SE(3)

1. Relative Pose Error (RPE) - RPE measures the local accuracy of the trajectory over a fixed time interval
∆. In our experiments, we have considered ∆ = 1 as the intuitive choice because consecutive frames
are being matched for estimating camera pose. Therefore, this metric corresponds to the drift of the
trajectory useful for the evaluation of visual SLAM systems. Relative Pose Error at any time step i is
defined as

Ei =
(︁
Q−1

i Qi+∆
)︁−1 (︁

P−1
i Pi+∆

)︁
(1)

From these errors, the root mean squared error (RMSE) of the translational component of Ei over all
time indices i is given by -

RMSE(E1:n ,∆) =
(︄

1

m

m∑︂
i=1

∥trans(Ei )∥2

)︄1/2

(2)

2. Absolute Pose Error (APE) - This metric measures the global consistency of the estimated trajectory
i.e, it compares the absolute distance between the estimated and ground-truth trajectory. As both
trajectories can be specified in arbitrary coordinate frames, they first need to be aligned. This can
be achieved by using Umeyama Alignment [46], which finds the rigid-body transformation S corre-
sponding to the least-squares solution that maps the estimated trajectory P1:n onto the ground truth
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trajectory Q1:n . The absolute trajectory error at any time step i is computed as

Fi =Q−1
i SPi (3)

Similar to RPE, the RMSE of the translational component is given by

RMSE(F1:n) =
(︄

1

n

n∑︂
i=1

∥trans(Fi )∥2

)︄1/2

(4)

The RPE considers both translational and rotational errors, while the ATE only considers the translational
errors. RPE metric provides an elegant way to combine rotational and translational errors into a single mea-
sure. However, rotational errors typically also manifest themselves in wrong translations and are thus indi-
rectly also captured by the ATE. the two metrics are strongly correlated.

5 Datasets

There exists a number of datasets for quantitatively evaluating the performance of visual SLAM and localiza-
tion algorithms. We have conducted experiments and performance comparison using two robust datasets
- TUM RGB-D Dataset [31] and KITTI Dataset [32]. Until now in this research, we have not performed any
quantitative evaluation with our target area (factory related environment) because of lack of proper dataset
as well as corresponding ground-truth information but we plan to work on this in the future.

5.1 TUM RGB-D Dataset

This dataset consists of 39 RGB-D image sequences (with 6-DoF camera poses) and near accurate ground-
truth trajectory information recorded in various indoor environments. These sequences are recorded us-
ing Microsoft Kinect sensor at a frame rate of 30 Hz. Most image sequences in this dataset are completely
static-content based environment with only 9 sequences having some dynamic content in the scenes. In
this research, we focus on evaluating the performance of algorithms on these nine image sequence scenes
involving dynamic contents. Both static-based and dynamic-based SLAM algorithms are evaluated on these
sequences and compared with additional variations which are explained later.

Brief Description of the dynamic sequences: In the sequences named sitting, there are two people sitting
while speaking and gesticulating, i.e., there is low degree of motion. In the sequences named walking (w),
two people walk as shown in Fig. 10. For both types of sequences sitting (s) and walking (w) there are
further four types of camera motions: (1) halfsphere (half): the camera moves following the trajectory of a
half sphere, (2) xyz: the camera moves along the x-y-z axes, (3) rpy: the camera rotates over roll, pitch and
yaw axes, and (4) static: the camera is manually kept static.

(a) (b) (c) (d) (e)

Figure 10: Raw example images taken from one of the walking sequence of TUM RGB-D dataset showing people walking
with camera movement

5.2 KITTI Dataset

The KITTI Dataset consists of 22 stereo sequences recorded at a frame rate of 10 Hz from a car in urban and
highway environments with a mixed content of static and dynamic objects in each sequence. In general, the

12



static objects in the scenes include houses, trees, bushes, etc. whereas the dynamic objects mainly consists
of various types of vehicles, people, etc. as shown in Fig. 11. We use only 11 sequences out of total 22, as
only they have ground-truth information available.

(a) (b) (c) (d)

Figure 11: Raw example images taken from various sequences of KITTI dataset showing outdoor environment scenes
consisting of static and dynamic objects captured using a camera mounted on top of moving vehicle

6 Experiments and Results

The experimental operating environment is a CentOS-based desktop computer configured as an Intel Core
i7-7300HQ CPU (4-core 2.5 GHz), 32 GB of RAM, and NVIDIA Titan X (Pascal) with 6 GB of graphic memory
for semantic segmentation module. For each meaningful evaluation of an algorithm on an image sequence,
we run it multiple times (3 or 5 times) and take the median of the error metric value in order to mitigate the
effects of randomness and uncertainties.

6.1 Dynamic object segmentation module - Mask RCNN

In this research, we use Mask RCNN network for segmentation of dynamic class objects. We use the Mask
RCNN pre-trained on MS COCO dataset [33] for instance-level segmentation task implemented by Matter-
Port [34]. Each incoming video frame is passed through Mask RCNN network trained to detect and segment
objects belonging to 80 different classes. Out of these 80 classes, we only consider 20 manually selected
dynamic class categories such as human, various common occuring vehicles (car, bus, bicycle, etc.), and
some common animals. The Mask RCNN network outputs a binary mask (of the same size as input frame),
segmenting the input frame into static and dynamic content. Fig. 12 and Fig. 14 shows the segmentation
output of Mask RCNN overlayed on the input frames from TUM RGB-D and KITTI dataset respectively. This
segmented mask information is forwarded to the visual SLAM module which performs further computation
using extracted ORB keypoint features taken only from the static image region and rejects the keypoints be-
longing to the detected dynamic objects.

When Mask RCNN network is integrated with the SLAM module, the overall camera pose estimation (track-
ing) speed is roughly around 6-7 fps. Thus, the Mask RCNN creates a bottleneck in the entire system as
the segmentation speed of Mask RCNN is roughly around 5-6 fps on an NVIDIA Tesla M40 GPU as reported
by He et al. [17]. In order to improve the tracking speed so that the system can run in real-time, we tried
different variants of segmentation approach by skipping dynamic segmentation on each and every frame
and pass every mth frame to Mask RCNN network. For the intermediate frames, for which the dynamic seg-
mentation is not performed explicitly by the network, we use segmentation output from the immediate last
segmented frame. In this experiment, we use m = 1 (every frame), m = 2 (every other frame), m = 5, m = 10
and compare the performance of these variants by computing the RPE and APE as described in section 4.

6.1.1 TUM RGB-D dataset

Table 1: TUM RGB-D dataset: Average RMSE taken over all the sequences for each of the five variants compared in Fig.
13

Error Metric mask skip 1 mask skip 2 mask skip 5 mask skip 10 static
APE 0.06893 0.07374 0.06368 0.06722 0.03345
RPE 0.01874 0.02085 0.01839 0.02017 0.02054
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(a) (b) (c) (d) (e)

Figure 12: Detection and segmentation of dynamic class objects in scenes taken from the walking sequence of TUM
RGB-D dataset using Mask RCNN network. In these example images, there is only a single dynamic class object in the
scene - human, and the network robustly detects with good acceptable accuracy
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Figure 13: TUM RGB-D dataset: Comparison of (a) APE and (b) RPE for different variants of dynamic segmentation
approach (with mask-skip parameter m = 1,2,5,10) and static-based approach (without dynamic segmentation)

Observations: Fig. 13 shows the evaluation results comparison of APE and RPE for different variants of Mask
RCNN based SLAM and static based SLAM on the dynamic sequences from TUM RGB-D dataset. Table 1
summarizes the average RMSE error taken over the nine dynamic sequences from the TUM RGB-D dataset
for each of the five variants compared in Fig. 13. Following are the observations and reasoning based on
these results:

1. The segmentation result of Mask RCNN network in the images from this dataset are pretty accurate.
The implementation of Mask RCNN network was directly adapted from MatterPort [34], without any
requirement of fine-tuning. In order to mitigate boundary effects (improper segmentation of bound-
ary pixels belonging to a dynamic class object can lead to erroneous ORB features), we use dilation
of binary masks (with a small window size=5). In some frames, the network randomly detects small
blobs of static objects as belonging to dynamic classes which might bring some inaccuracy to the
overall performance (almost negligible).

2. The performance of static-based approach is nearly comparable or better than Mask RCNN based
dynamic segmentation approach in sitting sequences (very less dynamic content). One possible ex-
planation for this behavior can be due to very less dynamic content in these sequences (described in
Sec. 5.1), as the two persons are speaking and gesticulating while sitting. This will lead to rejection
of potential feature points belonging to dynamic objects that could have been used for matching as
those dynamic objects are not moving.

3. The dynamic segmentation approach performs better or comparable to the static-based approach in
walking sequences (with prominent dynamic content). In this set of sequences, as the dynamic class
objects are moving and walking around, the feature points belonging to the moving people should
not be taken into account for any of the feature matching tasks in the visual SLAM pipeline. This
represents the ideal way of estimating camera pose with reduction in erroneous feature points. This is
done by the dynamic segmentation approach contrary to the static-based approach which considers
all the feature points available in the scene.
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4. Based on the results and corresponding reasoning described in point 2 and 3, we observe that if an
image sequence has dynamic class objects which are static for most part of the sequence, then the
segmentation approach will cause rejection of feature points belonging to those non-moving dynamic
class objects. Thus, in these cases, the dynamic class objects apparently behave similar to static ob-
jects and their dynamic nature does not affects the performance of static-scene based visual SLAM
to a great extent. Hence, in the sitting sequences, the static-based approach produces lower error
compared to dynamic segmentation approach.

5. Among the various mask-skip variants m = 1,2,5,10, the results are ambiguous and does not present
any definite conclusion as can be seen from the Fig. 13 as well as Table 1. But based purely on logical
evidence, we can say that performing dynamic segmentation for every consecutive frame (m = 1)
would be more accurate than skipping frames. The expected result in these mask-skip variants should
be increase in performance error as we increase the value of mask-skip parameter m. The reason
for using mask-skip variants was to improve segmentation speed and thus the overall running speed,
while keeping the performance acceptable.

6.1.2 KITTI dataset

(a) (b) (c) (d)

Figure 14: Detection and segmentation of dynamic class objects in the scenes from KITTI dataset using Mask RCNN
network
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Figure 15: KITTI dataset. Comparison of (a) APE and (b) RPE for dynamic segmentation approach (only with m = 1) and
static-based approach (without dynamic segmentation)

Table 2: KITTI dataset: Average RMSE taken over all the sequences for dynamic segmentation approach and static-based
approach compared in Fig. 15

Error Metric mask skip 1 static
APE 7.8108 14.5872
RPE 0.2437 0.4614

Observations: Fig. 15 shows the evaluation results comparison of APE and RPE for dynamic segmentation
approach and static-based approach on the KITTI dataset. Based on these results, following observations
can be made:
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1. In this dataset, the segmentation results of Mask RCNN network is very much acceptable without any
fine-tuning as evident in Fig. 14. The dynamic class objects in this dataset sequence mostly include
cars, vehicles, bicycles, and human.

2. The performance of dynamic segmentation approach is better than static-based approach in nearly
all the sequences of this dataset except sequence 0 and sequence 4 as can be seen in Fig. 15. This
dataset involves large camera movements captured from moving car as well as there is good amount of
dynamic content in the scene as compared to sitting sequences from TUM RGB-D dataset. Therefore
the results in these sequences between the two approaches are more contrasting compared to TUM
RGB-D dataset.

3. We compare the average RMSE taken over all the sequences for both the approaches as shown in Table
2. From this table, it is evident that the dynamic approach is performing better compared to static-
based approach for this dataset.

4. We did not perform experiments with mask-skip approach for this dataset sequence, as the camera
movement between frames is significant enough. This was resulting in change in position of dynamic
objects between frames which are separated by 5 or 10 frames. Thus, using masks from past frames
for current frame resulted in mis-placement of segmented mask.

6.1.3 Experimental Conclusion

1. Dynamic segmentation approach performs better than static-based approach in real-world scenarios
with dynamic content. In static-scene environment, where dynamic scene content is small or negli-
gible, the performance of dynamic segmentation approach is nearly comparable and not significantly
reduced or affected compared to static-based approach.

2. In all cases and scenarios, the dynamic segmentation approach has one basic advantage over static-
based approach. The environment map created in the former case does not consists of 3D landmark
points belonging to dynamic objects appearing along the sequence. This leads to creation of re-usable
static maps consisting of map-points only from structural objects and therefore can be re-used for
long-term applications.

3. In our application scenario of localization of human workers in factories, we need to create a static re-
usable map of the environment by removing the effects of dynamic class objects in the scene. Even if
the dynamic class object is static and not moving during map creation, it can move later and will lead
to inaccuracies during localization when the user is navigating. In case the map is created without
any dynamic objects in the environment (one-time activity so this can be done), during localization,
the dynamic moving objects will pose a problem and hence need to be removed from the scene using
segmentation approach.

7 Problems encountered and bottlenecks

1. We faced issues while integrating the visual SLAM module (written in native C/C++ for fast real-time
performance) with dynamic segmentation module (written in python). The bridging involved con-
version and sending of image data from C++ Mat object to python object data and vice-versa. This
problem has been resolved and we currently have a successful bridge for dynamic segmentation based
visual SLAM.

2. Currently, we are working on the creation of the smartphone application for self-localization. One
major problem encountered was the integration of various 3rd party libraries in the android project
which took a lot of effort and time. The integration has been done for all the libraries except one -
pangolin used for map rendering and visualization. We are looking for an alternative approach to this.

3. The speed of the Mask RCNN segmentation in the SLAM pipeline is a major bottleneck since we need
to perform in real-time. One alternative is to use mask-skip approach with mask-skip value m = 2
(leaving every other frame) leading to improvement in speed.
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8 Safety Considerations

This project has potential application in the safety of human workers in factories. For potential risk de-
tection involving dangerous or heavy objects, the basic principle is to estimate the positional relationship
between any human worker and the dangerous object. Our current in-progress localization system can be
used to detect workers location inside factories, which can be compared with dangerous object's position
to determine whether the scenario poses any risk to the worker. In this way, the self-localization technology
can be used for improving safety of workers in factories.

9 Environmental issues considered

This research does not include any activity that impacts the environment in any significant way.

10 Benchmark of this research

Research and development in the field of visual-inertial SLAM has been going on for a while now and many
companies have been using and advancing this technology according to their needs. Apple released its own
AR technology called "ARKit" which is a software development kit providing functionalities for device mo-
tion tracking and mapping. This tool can only be used for apple-based devices. DragonFly by Accuware has
developed SLAM-based visual positioning system that provides indoor location to robots, drones, forklifts
and other vehicles, in GPS-denied environments, using a standard camera. Another SLAM technology called
"GrandSLAM" has been developed by Kudan, which accepts a wide range of sensor data such as camera, ToF,
Lidar, IMU, etc. for device pose estimation. One of the examples of their applications is the localization soft-
ware for autonomous vehicles, robo taxis, etc.

These competitors have made progresses both in technology development and commercial availability.
DragonFly and Kudan’s GrandSLAM does not provide any description of their algorithm. Since there is no
description about their method, it may be reasonable to guess that theirs are not designed especially to deal
with dynamic objects in real-world environments as it is not mentioned anywhere in their description.

11 Consideration of IPR status

11.1 Intellectual property owned by other organisations (domestic/foreign patent)

Table 3 provides brief details about a few of the patent filed on the technology of pose estimation using SLAM

12 Conclusion

12.1 Summary

In this research, we have integrated a visual SLAM system (building on OpenVSLAM) with a dynamic object
segmentation module capable of detecting and segmenting dynamic objects in the scene. This approach
makes the overall system robust in situations where the dynamic content is large and represents an im-
portant part of the scene as well as there is sufficiently large camera motion. Our approach also creates
a static-object based and therefore reusable map of the environment. The estimated map only contains
structural objects and can therefore be re-used in long-term applications.

12.2 Future issues

In this work, we have done few experiments focused on improving the performance of SLAM in dynamic
environments and shown the results using standard datasets. Next, we are working to create an android-
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Table 3: Existing patents related to the technology of localization and pose estimation using SLAM

NO. Applicant Publication no. Filing date

1
Starship Technologies/Ahti Heinla et al. US20190354110A1 2019-07-30

Name of the invention: Mobile robot system and method for autonomous localization using
straight lines extracted from visual images

Brief explanation of the invention: This patent presents a mobile robot which localizes itself by extract-
ing features from visual images and comparing them with existing
map data

NO. Applicant Publication no. Filing date

2
Starship Technologies/Ahti Heinla et al. JP2018532204A 2016-11-02

Name of the invention: Device and method for autonomous self-location estimation
Brief explanation of the invention: This patent presents a mobile robot which localizes itself by extract-

ing features from visual images and comparing them with existing
map data

NO. Applicant Publication no. Filing date

2
Huawei Technologies Co., Ltd/Panji Setiawan et al. WO2020048623A1 2020-03-12

Name of the invention: Estimation of a pose of a robot
Brief explanation of the invention: This patent presents a method for estimating robot pose using a

feature-based method. The camera pose is estimated using a suc-
cessive weighted sum of previous pose estimates. The weights are
chosen using improved particle filtering method.

based smartphone application that can perform self-localization and add navigational capabilities to the
application for human workers in factories.
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