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Abstract

In this report, we present an end-to-end data-driven
system for enhancing the quality of speech signals using
a convolutional-recurrent neural network. We present a
quantitative and qualitative analysis of our speech en-
hancement system on a real-world noisy speech dataset and
evaluate our proposed system's performance using several
metrics such as SNR, PESQ, STOI, etc. We have employed
wavelet pooling mechanism instead of max-pooling layer
in the convolutional layer of our proposed model and
compared the performances of these variants. Based on
our experiments, we demonstrate that our model’s perfor-
mance on noisy speech signals using haar wavelet is better
than when using max-pooling. In addition, wavelet based
approach results in faster convergence during training as
compared to other variants.

Index Terms: Convolutional neural networks, Recurrent
neural networks, Wavelet pooling, Speech enhancement.

Code: Our implementation can be found here on github.

1. Introduction
Speech Enhancement is one of the most important tools

in modern speech recognition and communication systems
and has numerous applications in these areas. Currently,
most machine learning systems rely on large amounts of
data to train large-scale deep neural networks. One such
system is an automatic speech recognition system. Due to
the distribution mismatch between clean data used to train
the system and noisy test data encountered during deploy-
ment, there is often a degradation in recognition accuracy.
Thus, speech enhancement algorithms can act as a pre-
processing module helping to reduce the noise in speech
signals before it is fed into these systems. The goal of
speech enhancement is typically to recover clean speech
from noisy, reverberant, and often bandlimited signals in
order to yield improved intelligibility, clarity, or automatic

speech recognition performance. However, the acoustic
goal for a great deal of speech content such as podcasts,
demo videos, lecture videos, voice calls, etc. is often not
merely clean speech, but speech that is aesthetically pleas-
ing. In addition, a growing amount of speech content nowa-
days is being recorded on common consumer devices such
as tablets, smartphones, iPads, and laptops in common but
non-acoustically treated environments such as homes, of-
fices, public cafes, etc. The goal of enhancing such record-
ings should not only be to make it sound cleaner as would
be done using traditional speech enhancement techniques
but to make it sound like it was recorded and produced in a
professional recording studio.

2. Related Work
Speech enhancement has attracted a lot of research ef-

forts over the past decades from the research community.
But with modern advancements in science and technol-
ogy, there are new upcoming challenges every day and the
threshold for better quality speech keeps rising. In the past
years, data-driven approaches have gained popularity due
to availability of large amounts of data as well as computa-
tional resources. Past works using multi-layer perceptrons
(MLPs) for speech enhancement revolves around applying
MLP as a non-linear function approximator to learn the
mapping between the noisy speech and its corresponding
clean speech [1, 2] using regression based training. How-
ever, the fully-connected network structure of MLPs usually
cannot exploit the rich spatial and temporal patterns in spec-
trograms. Work done by [3] introduced the use of RNNs
to automatically capture the temporal nature of speech sig-
nals, thereby removing the need of explicitly feeding con-
text windows in MLPs.

A popular approach to solve this problem is to treat it
as an image-image translation problem where we use the
STFT spectrogram of the noisy speech signal to product
clean spectrograms. EHNet by Zhao et. al. [4] is one such
work that proposes to use a combination of convolution and
recurrent neural networks to enhance the quality of speech
signals. The idea here is to use CNN to exploit the local
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(a) Wavelet pooling - Forward propagation algorithm

(b) Wavelet pooling - Backward propagation algorithm

Figure 1. Wavelet pooling

structures in the frequency and time domain, and the RNNs
help in modeling the dynamic correlations between adja-
cent frames. It is purely a data-driven approach and does
not make any underlying assumption about the noise in the
speech. It also demonstrates substantial performance im-
provements over traditional statistical-based methods. One
drawback of this approach is that the authors in [4] only
clean up the magnitude spectrum and use the noisy phase
as it is to recover the clean speech signal. Recent work
by Chhetri et. al. [5] goes one step ahead and proposes to
split the STFT spectrogram into their real and imaginary
channels and use separate decoder branches to denoise both
channels, and finally combine them together to produce out-
put clean speech signal.

2.1. Wavelet Pooling for CNNs

In the past decade, CNNs have become very popular and
common in various visual applications or tasks such as im-
age and object classification, object detection, pose estima-
tion, etc. Due to the specific spatial structure in CNNs, they
are most apt for image and video data as compared to linear
vector-based simple multi-layer perceptron. Pooling lay-
ers are very commonly used across most CNN-based ar-
chitectures such as, max pooling, average pooling, mixed
and stochastic pooling, etc. But they often suffer from
overfitting which hinders the potential for optimal learn-
ing. Wavelet pooling [6], on the other hand, addresses
this by proposing to decompose features using second-level
wavelet decomposition and discards the first-level subbands
to subsample features. This algorithm more accurately rep-
resents the feature

3. Problem Formulation
In this work, we assume X ∈ Rd×t to be the noisy

spectrogram and Y ∈ Rd×t to be its corresponding clean

(a) Model 1 architecture overview

(b) Model 2 architecture overview

Figure 2. Architecture overview across model 1(a) and model 2(b)

spectrogram, where d is the number of frequency bins in
the spectrogram and t is the time-length of the spectrogram.
Given a training set D = {(Xi, Yi)}ni=1 of n pairs of noisy
and clean spectrograms, the problem of speech enhance-
ment can be formalized as finding a mapping gθ : Rd×t →
Rd×t that maps a noisy version to a clean one, where g is
parametrized by θ. We use the MSE loss as defined in Eq
1 between the predicted spectrogram and the ground-truth
spectrogram of the clean speech as our training objective
and try to optimize the model parameters to learn the map-
ping.

min
θ

n∑
i=1

∥gθ(xi)− yi∥2F (1)

4. Proposed Approach

We have implemented a U-Net-like convolutional-
recurrent network with an encoder-decoder architecture and
an intermediate bidirectional recurrent neural network mod-
ule with input as STFT spectrograms of noisy speech sig-
nals as shown in Fig 2. The idea here is similar to that
in [4] and [7] where the convolutional layers capture the lo-
cal structure in the time and frequency domain while the
RNN module captures the temporal dependencies. Further,
we have also added another decoder after the RNN which is
responsible for predicting the clean phase spectrogram.

Based on [6], we have implemented wavelet pooling and
compared the performance with traditional max-pooling to
see the variation in performance across different wavelets.



Layer Specifications Layer Specifications

Encoder Block


Convolution layers

Pooling
Batch Normalization

Non-Linear Layer

 Decoder Block

 De-convolution layers
Batch Normalization

Non-Linear Layer



Table 1. Specifications of the module in the encoder and decoder blocks

4.1. Network Architecture

The proposed network architecture has a common en-
coder module that has 5 layers of the block described in Ta-
ble 1. This block consists of convolution layers that is con-
figured such that the input and the output spatial dimensions
remain the same. This is followed by a pooling module
which varies across wavelet pooling and max-pooling. Fi-
nally, we apply batch normalization and element-wise non-
linear ReLU activation on the output downsampled feature
map as it helps to alleviate the gradient vanishing prob-
lem [8]. The output of the convolutional encoder block is
fed to the bidirectional LSTM module that have recurrent
connections in forward and backward directions and it helps
to model long-term interactions in the speech spectrogram.

The decoder module has 5 layers of the block as shown
in Table 1. This block uses transposed convolution lay-
ers to up-sample the input feature map to twice the input
dimension. The input to this block is the concatenation
of the output of the previous block in the decoder along
with the corresponding block in the encoder module using
skip-connections. The encoder feature module helps in up-
sampling the feature maps conditioned on the input data.
This is followed by the standard batch normalization and
non-linear activation. Further details of the model architec-
ture can be found in Fig 3.

We have performed our experiments using 2 model vari-
ants - model 1 and model 2 - whose architecture overview is
shown in Fig 2. A detailed architecture specifying the skip
connections can be found in Fig 3.

5. Experiments and Results

5.1. Dataset and Setup

We have used the CSR-I (WSJ0) dataset [9] which con-
sists of ∼ 42000 clean speech recordings of different speak-
ers. We synthetically generate noisy speech signals by
adding randomly sampled noise from a noise corpus ob-
tained from [10] to the clean speech signals as per Eq 2.
A sample instance of a clean signal and its corresponding
noisy speech signal is shown in Fig 4.

Xnoisy[n] = Xclean[n] + α ∗ Xnoise[n] (2)

Figure 3. Model architecture for denoising magnitude and phase
spectrogram of the noisy speech signal

Figure 4. Figure showing a sample time-domain clean speech sig-
nal, random noise, and corresponding noisy speech signal obtained
using Eq 2.

As a preprocessing step, we use Short-Time Fourier Trans-
form (STFT) to extract the spectrogram for each signal ut-
terance. While generating data for our experiments, we en-
sure that the length of each data point (or noisy/clean speech



signal) in the time domain is the same for all samples, so
that the resultant STFT spectrogram is of a fixed dimension
(d × t). This has several advantages both during training
as well as for overall objective learning. Firstly, it helps in
batching the data during training which results in faster con-
vergence and decreases the overall training time. Secondly,
it ensures that each data point has equal weightage during
training. We trimmed each speech signal upto a length N in
time domain and used STFT window size of 1024 (or 256)
resulting in a spectrogram size of 1024 (or 256) frequency
bins and t = time frames. Finally, we sampled the noise
weight factor α in Eq 2 randomly in the range [0.6, 0.9]. We
create and use a train set consisting of 6000 noisy speech
samples, a validation set of 1000 noisy samples, and a test
set of 100 noisy samples. To train our network, we fix the
number of epochs to be 25, and used SGD algorithm with a
learning rate of 0.001.

5.2. Evaluation Metrics

To thoroughly measure the enhancement quality of
speech signals, we use the following three metrics to eval-
uate different models and variants learned for the task of
speech enhancement:

• Signal-to-Noise Ratio (SNR): SNR is a measure that
compares the level of a desired signal to the level of back-
ground noise and is defined as the ratio of signal power to
the noise power, often expressed in decibels.

SNRdB = 10 log10
Psignal

Pnoise
= 10 log10

(Asignal

Anoise

)2

(3)

• Perceptual Evaluation of Speech Quality (PESQ): It
comprises of a test methodology used by phone manufac-
turers, telecom operators, etc. for automated assessment
of speech quality as experienced by a user. It is designed
to predict subjective opinion scores of a degraded audio
sample where a larger PESQ score is desirable.

• Short-time Objective Intelligibility (STOI) [11]: Intel-
ligibility measure is highly correlated with the intelligibil-
ity of degraded speech signals, e.g., due to additive noise,
single-/multi-channel noise reduction and is a function of
the clean and degraded speech signals. As with PESQ and
SNR, we aim for a higher STOI value.

5.3. Results and Analysis

Analyzing the training curves in Fig 5, we observe faster
convergence using wavelet pooling across the 2 models.
This is consistent with the expected behavior as per [6].
However, there was no clear trend across the different
wavelets used for wavelet pooling. In fact, we observed
similar trends using wavelet pooling and max-pooling for
various experiments conducted using the 2 models such as,

(a) Training loss of Model 1

(b) Training loss of Model 2

Figure 5. Training Loss curves for model 1 and model 2 com-
paring the variation of loss across different pooling variants in-
cluding max-pooling, haar wavelet, daubechies I and biorthogonal
wavelets.

SNR performance in Fig 6. This might be due to the lack of
spatial structure in the spectrogram images, unlike typical
RGB natural images which enable wavelet-based pooling to
perform better than standard pooling methods such as max-
pooling, stochastic pooling. In addition, both max-pooling
and wavelet pooling are non-learnable layers without any
learnable parameters and hence show similar trends in these
experiments.

Comparing performances across model 1 and model 2,
we see an increase in the SNR for the latter confirming
our hypothesis that cleaning up only the magnitude spec-
trogram is not sufficient. By addressing both the magnitude
and phase spectrogram via the proposed approach, model 2
outperforms model 1 by achieving a better SNR on valida-
tion data. We plot other metrics mentioned in section 5.2 in
Fig 6, Fig 7, and Fig 8.

6. Conclusion

In this project, we present a system that combines both
convolutional and recurrent neural networks for speech en-



Metrics Max Pooling Haar Daubechies 1 Biorthogonal
M1 M2 M1 M2 M1 M2 M1 M2

SNR -0.3933 -0.1119 -0.8252 -0.7809 -2.0521 -0.1893 -0.830 -0.2712
MSE 0.0132 0.0230 0.0145 0.0253 0.0163 0.0227 0.0162 0.0227
STOI 0.4405 0.4066 0.4484 0.4569 0.5293 0.5123 0.4452 0.4945
PESQ 1.1482 1.1843 1.242 1.1273 1.193 1.3258 1.171 1.1561

Table 2. Test set performance across model 1 and 2 using different pooling mechanisms

(a) Validation SNR of model 1

(b) Validation SNR of model 2

Figure 6. SNR curves evaluated on validation data during training
stage after every few epochs.

hancement. The convolution layers exploit the local struc-
tures in the time and frequency domain, whereas bidirec-

tional RNNs model the dynamic correlations between adja-
cent frames. Due to sparse nature of convolution layers, our
model requires less computation as compared to MLPs. We
experimented across 2 model variants for the given task of
speech enhancement. We also tried different pooling mech-
anisms such as max-pooling, stochastic pooling, wavelet
pooling with different wavelet types. Finally, we compared
our results for different models using SNR, PESQ and STOI
evaluation metrics. We observed improvement in SNR val-
ues obtained on validation set during training for both the
models across different variants.
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Figure 7. Evaluation curves of model 1 obtained on validation data during training



Figure 8. Evaluation curves of model 2 obtained on validation data during training
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