Speech Enhancement using
Convolutional-Recurrent NNs and
Wavelet Pooling

ECE 251C Project Final Presentation

Team-11: Saqib Azim, Parthasarathi Kumar

Date: Dec 8, 2022



Problem Definition

- To enhance the quality of speech signals for improved intelligibility, clarity of
audio, music, recorded videos

- Goal is to recover clean speech from noisy signals

- Applications:
- In preprocessing noise reduction modules for speech recognition systems

- To improve audio quality on the receiver side in a noisy communication system

- Noise reduction in videos/audios recorded on common consumer devices (smartphones,
laptops, etc.) in noisy environments



Existing Approaches

Paper 1 [EHNet]:

- EHNet proposes a convolutional-recurrent network based approach to denoise the noisy

magnitude spectrogram

- Feedforward noisy spectrogram generated from noisy speech signals to a U-Net based
encoder-decoder architecture with a bidirectional LSTM layer in between.

Paper 2 [GCRN]:

bidirectional RNN

- Cleaning magnitude spectrum is not sufficient — Authors propose similar model to denoise

the phase spectrum

- Proposed two separate decoders for the real and imaginary parts of magnitude spectrum




Dataset

-  CSR-l (WSJ0) dataset [1]
- contains clean speech recording of
different speakers.

- Noise randomly sampled from a corpus of
noise recordings [2] and added to the clean
speech

- Sampled noise randomly added to clean
speech to create data

Xnoisy[n] = Ailean [n] + a * Xpoise [n]

o)  CLEAN SPEECH ) NOISY SPEECH

[1] https://catalog.ldc.upenn.edu/L DCI3S6A
[2] http://www.ee.ic.ac.uk/naylor/ACEweb/index.html
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https://catalog.ldc.upenn.edu/LDC93S6A
http://www.ee.ic.ac.uk/naylor/ACEweb/index.html

Dataset Preparation

- Considered speech signals of constant time
duration.

- Spectrogram calculated using STFT with
varying window size (512, 256, 1024)

- Dataset size -
- Train : 6000 samples
- Val :1000 samples
- Test : 100 samples

[1] https://catalog.ldc.upenn.edu/L DCI3S6A
[2] http://www.ee.ic.ac.uk/naylor/ACEweb/index.html
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https://catalog.ldc.upenn.edu/LDC93S6A
http://www.ee.ic.ac.uk/naylor/ACEweb/index.html

Model Architecture

- U-net like encoder-decoder architecture with a bidirectional RNN in-between to exploit local
structures in frequency and temporal domains.

- Bidirectional RNNs model the dynamic correlations between adjacent frames
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Proposed Method - Model

Clean up noisy phase by
having different decoders for
real and imaginary
spectrograms

Weights shared across
encoders.
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https://www.amazon.science/publications/on-the-robustness-of-deep-learning-based-speech-enhancement

Wavelet Pooling

- Alternative to traditional pooling mechanisms that does a better job at compressing the features.

- Uses the 2nd order wavelet subbands to reconstruct the compressed feature

- Process reversed for backpropagation Wi + 1, k] = hy[—n] * W, [j, n][n=2k k<0

Wyli + 1, k] = hy[—n] * Wy[j, n]|n=2k k<0
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https://openreview.net/forum?id=rkhlb8ICZ


https://openreview.net/forum?id=rkhlb8lCZ

Implementation & Training details

e Wauvelet pooling - Used torch library for wavelet toolbox - ptwt
o Used backward hook functionality in pytorch modules to realise backpropagation mentioned in
paper
o 4 variants - max-pooling, wavelet pooling using haar, db1 and biorthogonal wavelets

e Considered fixed length input signal (equivalent to spectrogram of size 256 x 64) —
helped in batching data

e Training Details -
e Batchsize: 8
e ~25epochs

SGD optimizer

MSE Loss between the predicted and ground-truth spectrogram

N
min - Z; |lge(x:) — yil|F
i=



https://github.com/v0lta/PyTorch-Wavelet-Toolbox

Evaluation metrics

. . . . . 2
- SNR - Signal to Noise Ratio  SNR,z = 10log,, Plignal _ 1010g; (4’231g-nal)

noise

- PESAQ - Perceptual Evaluation of Speech Quality

- Designed to predict subjective opinion scores of a degraded audio sample.
- PESQ returns a score from 4.5 to -0.5, with higher scores indicating better quality.

- STOI - Short time Obijective Intelligibility

- Highly correlated with the intelligibility of noisy speech signals, e.g., due to additive noise



Model 1 - Magnitude only

Results - Model 1 vs Model 2 —=
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Evaluation Results - SNR

e Cleaning phase and magnitude (model 2) results in better SNRs than model 1.

e Using wavelet pooling performs similar to max pooling and we observe similar
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Evaluation Results - MSE

e Not enough structure in spectrogram image data (unlike typical RGB images) for wavelets to
significantly outperform max-pooling.

e Just like max-pooling, we observe that wavelet pooling does not have any learnable parameters that
can boost performance over max-pooling
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Evaluation Results

Metrics Max Pooling
M1 M2
SNR -0.3933 -0.1119
MSE 0.0132 0.0230
STOI 0.4405 0.4066

PESQ 1.1482

1.1843

Haar Wavelet

M1

-0.8252

0.0145

0.4484

1.242

M2

-0.7809

0.0253

0.4569

1.1273

Daubechies 1

M1 M2

-2.0521 -0.1893

0.0163 0.0227

0.5293 0.5123

1.193 1.3258

Biorthogonal
M1 M2
-0.830 -0.2712
0.0162 0.0227
0.4452 0.4945
1.171 1.1561



Additional Results and Conc
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