
A Survey of Autoregressive Models for Image and Video Generation

Saqib Azim
UC San Diego
sazim@ucsd.edu

Mehul Arora
UC San Diego

mearora@ucsd.edu

Narayanan Elavathur Ranganatha
UC San Diego

nelavathurranganatha@ucsd.edu

Mahesh Kumar
UC San Diego
ar223@ucsd.edu

Abstract

This survey paper offers a comprehensive overview of
recent advances in autoregressive (AR) models for image
and video generation. It discusses state-of-the-art AR mod-
els like PixelCNN [34], PixelRNN [34], Gated PixelCNN
[26], and PixelSNAIL [5], emphasizing their unique archi-
tectures and contributions. The main challenge in AR mod-
els, handling long-range dependencies effectively, is ad-
dressed through various approaches, such as gated activa-
tions, self-attention mechanisms, and residual blocks. The
paper presents Locally Masked Convolution [15] and Au-
toregressive Diffusion Models [1,13] as examples of order-
agnostic approaches, improving upon traditional autore-
gressive models. Transformer-based networks [9, 23, 43]
are explored for autoregressive image generation, showcas-
ing superior performance in image quality and synthesis
tasks. Quantization-based models [44] enhance image di-
versity and quality through feature quantization and varia-
tional regularization. The paper then discusses Autoregres-
sive modeling in pixel space [17, 25, 40] and latent space
[24, 28, 38, 41] for video generation. The paper concludes
by discussing the strengths, limitations, and future research
directions in autoregressive models for image and video
generation, providing valuable insights for researchers and
practitioners.

1. Introduction
Generative models are crucial in unsupervised learning

as they allow for the generation of realistic and diverse sam-
ples from complex data distributions. These models aim to
learn the empirical distribution of training data and gener-
ate new images or samples that resemble the dataset. How-
ever, estimating the distribution of natural images, which
are high-dimensional and unstructured, presents significant
challenges. The task involves striking a balance between
building complex and expressive models while ensuring
tractability and scalability.

Deep generative models for images can be categorized
into three main types: Variational Autoencoders (VAEs),

Generative Adversarial Networks (GANs), and Autoregres-
sive (AR) Models. VAEs approximate a latent space and
generate diverse images by sampling from the learned la-
tent space. GANs, on the other hand, produce sharp, high-
resolution images, but there is no guarantee that they learn
the entire data distribution effectively, potentially leading to
incomplete coverage of the distribution.

AR models have emerged as a promising approach for
capturing the conditional distribution of high-dimensional
and structured data, such as images and videos. Unlike
GANs, AR models guarantee capturing the entire data dis-
tribution, resulting in a diverse set of generated samples.
Neural AR models offer tractable likelihood computation,
ease of training, and have shown superiority over latent vari-
able models. However, AR models face limitations in han-
dling high-resolution images due to growing memory and
computation requirements.

In recent years, the focus on autoregressive models has
expanded to include video generation. Autoregressive video
generation aims to generate realistic and coherent video se-
quences by predicting each frame based on previously gen-
erated frames. This task is particularly challenging as it re-
quires not only accurate image generation but also the mod-
eling of the physical dynamics and temporal dependencies
within the video. Autoregressive video generation models
have been developed to address these challenges, explor-
ing strategies such as atomic-level modeling of pixels across
time and space or autoregressive modeling in a downsam-
pled latent space.

2. Autoregressive Generative Models
An Autoregressive (AR) model is usually used in the

context of time-series modeling where it poses density es-
timation as a sequence modeling task in order to model the
conditional distribution over the next element conditioned
on all previous elements. AR models can also be used
to generate spatial data (e.g., images, videos) by imposing
some temporal ordering on the input spatial data. An ef-
fective approach used by autoregressive models is to treat
an n × n image x as a sequence of random variable pixels
denoted by x1, x2, . . . , xn2 and represent the joint distribu-

1

tion of image pixels Pdata(x) as the product of conditional
probabilities of all (or a subset) of previous pixels as shown
in below equation 1.

Pdata(x) = P (x1, x2, . . . , xn2) =

n2∏
i=1

P (xi|x1, . . . , xi−1)

This factorization converts the joint modeling problem
into a sequence problem. Every pixel depends on all the
pixels above and to the left of it, and not on any pixel not
yet predicted. To calculate these conditional likelihoods
P (xi|x1, . . . , xi−1) in a tractable and scalable way, one
can use universal approximators like deep neural networks.
There have been a number of efforts in the past years to use
deep AR models to sequentially predict image pixels.

Initial contributions to tractably compute the joint
distribution as a product of conditionals were provided in
fully visible neural networks [2] and Neural Autoregressive
Distribution Estimator (NADE) [32]. Autoregressive mod-
els have also been pivotal in the recent success and rapid
development of Large Language Models (LLM) following
the creation of Transformers [37]. Autoregressive models
for images started taking off most notably with PixelRNN
and PixelCNN [34] probabilistic generative models.

The generation of images and videos poses unique chal-
lenges due to their intricate spatial dependencies and rich
semantic content. Autoregressive models address these
challenges by factorizing the joint distribution of pixels us-
ing conditional probabilities. Unlike other generative mod-
els like Variational Autoencoders (VAEs) or Generative Ad-
versarial Networks (GANs), autoregressive models explic-
itly model the dependencies between pixels and generate
samples sequentially, one pixel at a time. These networks
have the advantage of returning explicit probability densi-
ties, unlike alternatives such as GANs, making it straight-
forward to apply in domains such as compression and prob-
abilistic planning and exploration.

3. Autoregressive Image Generation
3.1. Order Dependent Autoregressors

PixelRNN [34], one of the pioneer works introduced
in 2016, is composed of 2-D LSTM layers which capture
the information from previously generated pixels to model
the current pixel distribution. RNNs have been shown
to be extremely efficient in handling sequence problems.
The network scans the image one row and one pixel at
a time in each row and predicts conditional distribution
P (xi|x1, . . . , xi−1) of the current pixel over 256 possible
intensity values. Each pixel xi is in turn jointly determined
by 3 color channels (RGB) which are modeled successively

and conditioned on the other color channels as well as on
all previously generated pixels i.e., B conditioned on (R,
G), and G conditioned on R. Thus, the conditional distri-
bution of pixel xi given previously predicted pixels can be
expressed as follows:

P (xi|x<i) = P (xR
i |x<i)P (xG

i |x<i, x
R
i)P (xB

i |x<i, x
R
i , x

G
i)

Figure 1. Visualization of the input-to-state and state-to-state map-
pings for the three proposed architectures. (source: [34])

PixelRNN has two variants based on LSTM layer
types - Row LSTM (convolution applied along each row)
and Diagonal BiLSTM (convolution applied along image
diagonals). The Row LSTM is a unidirectional layer that
processes images row by row, computing features for each
row using 1-D convolutions. The layer captures a triangular
context (receptive field) above each pixel, shown in Figure
1 (middle), and hence is unable to capture entire context.
Diagonal BiLSTM scans the image diagonally, starting
from one corner and moving towards the opposite corner
computing the LSTM state along each diagonal step, and
therefore captures the entire context as shown in Figure 1
(right). To facilitate this process, the input map is skewed
to enable diagonal convolutions which are then used to
compute the input-to-state and state-to-state components
of the Diagonal BiLSTM. The network also incorporates
residual (or skip) connections [11] from one LSTM layer to
the next to improve the convergence speed and propagate
signals more directly through the network.

In PixelCNN [34], every conditional distribution
P (xi|x1, . . . , xi−1) is modeled by a CNN that takes as in-
put an image and outputs a 256-way probability distribu-
tion for each (sub)-pixel (R,G,B) in a sequential manner.
To ensure CNN only uses information from pixels above
and to the left of the current pixel, the convolution filters
are masked as shown in Figure 3 by zeroing out the filter
weights connecting to future pixels not yet predicted. This
is achieved by splitting the feature maps at every layer of the
network into three channels (R,G,B) and using either Mask
A or B depending on the layer as shown in Figure 3 (right).

PixelCNN architecture is described in Figure 2 and is
trained by maximizing a tractable log-likelihood function
of the training data. Inference in PixelCNN is sequential

2

Figure 2. PixelCNN and PixelRNN Architecture. i-s and s-s stands
for input-state and state-state convolutions (source: [34])

Figure 3. PixelCNN uses masked convolution layers to ensure that
(sub)-pixel i only uses past (sub)-pixels. For input layer (Mask A),
”B” sub-pixel is connected to ”G” and ”R” of input pixel i and
all previous pixels (li), ”G” sub-pixel is connected to ”R” and all
previous pixels (li), and ”R” is connected to only previous pixels
(li). For convolution layers other than the first one (Mask B), any
sub-pixel output from a convolution layer has already been masked
from its corresponding input sub-pixel. (source: [34])

i.e., generated pixel-by-pixel. First, an all-zero image is
passed to the model to predict the distribution of the first
(top-left) pixel which is modeled independently of other
pixels. Given the distribution, we sample to get a realization
for the first pixel and update our image. Each subsequent
pixel distribution is generated in sequence conditioned on
all previously sampled pixels. This process is repeated
until the entire image is generated. The sampling process
is relatively slow compared with other generative models
such as VAE or GANs, where all pixels are generated in
one go. However, recent advances use cached values to
reduce the sampling time.

PixelRNNs generally outperform PixelCNNs, but
the latter is faster to train due to the parallelizability of
convolutions, which is advantageous for large image sizes.
One possible reason for this advantage is that LSTM’s
recurrent connections enable each layer to access the entire
neighborhood of previous pixels, whereas the available
neighborhood region for PixelCNN grows linearly with the
depth of the convolutional stack. However, this limitation
can be mitigated by using more layers, as described in
Gated PixelCNN. During training and evaluation, the

distributions over pixel values are computed in parallel,
while image generation during inference is sequential.

Gated PixelCNN [26, 35] combines the strengths of Pix-
elRNN and PixelCNN by using masked convolutions with
LSTM gates, achieving performances comparable to Pixel-
RNN on CIFAR-10 and ImageNet datasets while training as
fast as PixelCNN. Feed-forward neural networks with gates
have been explored in previous works, such as highway net-
works [30], grid LSTM [16] and neural GPUs [47], and
have generally proved beneficial to performance. Taking
inspiration from it, the authors replace PixelCNN’s ReLU
activations between the masked convolutions with the fol-
lowing gated activation unit (hence named Gated Pixel-
CNN), similar to LSTM gates in PixelRNN, which helps
it to model more complex interactions.

y = tanh(Wk,f ∗ x)⊙ sigmoid(Wk,g ∗ x) (1)

PixelCNNs have a blind spot in their receptive field that
cannot be used to make predictions. This paper removes
that blind spot by combining two convolutional network
stacks: a horizontal stack conditioning on the current row so
far and vertical stack conditioning on all rows above whose
outputs are combined after each layer. Every layer in the
horizontal stack takes as input the output of the previous
layer as well as that of the vertical stack. If we had con-
nected the output of the horizontal stack into the vertical
stack, it would be able to use information about pixels that
are below or to the right of the current pixel which would
break the conditional distribution.

It also introduces a conditional variant of the Gated Pix-
elCNN (Conditional PixelCNN) that models the complex
conditional distributions of images given a latent vector
embedding. Gated PixelCNN outperforms the PixelCNN,
and performs comparably to PixelRNN.

PixelCNN++ [27], introduced by OpenAI, essentially re-
places PixelCNN with substantial improvements. It con-
tains a number of modifications (listed below) to the orig-
inal PixelCNN [34] that simplify its network structure and
improves performance.

• Instead of using a 256-way softmax for the conditional
distribution, it uses a discretized logistic mixture likeli-
hood that improves training speed and allows for better
handling of sub-pixel values.

• PixelCNN models the generative process based on indi-
vidual color channels. The authors claim the complexity
arising from separate modeling of subpixels is unneces-
sary and simplify the modeling of dependencies between
color channels by conditioning output joint distribution
over all 3 channels of a predicted pixel.

3

• PixelCNN employs convolutions with a small receptive
field, which captures local dependencies but may not ade-
quately model long-range structures. To alleviate this lim-
itation and enhance the generated image quality, it incor-
porates downsampling using stride 2 convolutions, thus
reducing computational costs compared to dilated convo-
lutions while preserving multi-resolution processing.

• This method enhances the information flow and model
structure by incorporating additional shortcut connections
between specific layers, resembling the architecture of
VAE and U-net models. In addition, dropout regular-
ization is employed to prevent overfitting, leading to im-
proved training and the generation quality.

PixelCNN++ is evaluated on the CIFAR-10 dataset and
produces better results as compared to PixelRNN, Pixel-
CNN, and Gated PixelCNN in terms of log-likelihood.

PixelSNAIL [5] incorporated the ideas of attention
mechanisms into the architecture of PixelCNN++ and made
several other changes to its structure.

Figure 4. PixelSNAIL Architecture

The main challenge in previous methods is the ability
to model long-range dependencies effectively. PixelSNAIL
addresses this challenge by combining causal convolutions
with self-attention mechanisms to estimate the probability
density. Causal convolutions provide high-bandwidth ac-
cess to earlier parts of the sequence, while self-attention
allows infinite access to information far away in the se-
quence. By interleaving these two, PixelSNAIL achieves
high-bandwidth access without constraints on the amount
of information it can effectively use.

Its architecture builds off the architecture of PixelCNNs
and consists of two building blocks as shown in Figure
4, namely residual blocks and attention blocks. Residual
blocks consist of multiple 2D convolutions each with resid-
ual connections and gated activations. They are masked
to ensure current pixel can only access pixels to the left
and above it. Attention blocks perform key-value lookups
by projecting the input to lower dimensions and utilizing
softmax-attention with masking to ensure causality.

PixelSNAIL outperforms previous autoregressive mod-
els such as PixelRNN and PixelCNN [34], PixelCNN++

[27], and Image Transformers [23] in terms of negative log-
likelihood on CIFAR-10 and ImageNet 32 × 32 datasets,
which suggests that both causal convolutions and attention
block are essential components of this architecture. One
drawback is that due to the sequential sampling of each
pixel, the sampling speed is comparable to previous autore-
gressive models.

3.2. Order-Agnostic Autoregressive Models

Order-Agnostic Autoregressive Models generate vari-
ables in a random order σ ∈ SD where SD is the permu-
tation of all integers 1, 2 . . . D. The log-likelihood for such
a model is given by:

log p(x) ≥ Eσ∼U(SD)

D∑
t=1

log p(xσ(t)|x<σ(t)) (2)

This can then treated as a latent variable model and there-
fore the log-likelihood can be written as:

log p(x) = logEσ∼U(SD)p(x|σ) ≥ Eσ∼U(SD) log p(x|σ)
(3)

A expected lower-bound can be derived for the log-
likelihood which is then used to train the models as:

log p(x) ≥ Et∼U(1,...,D)[D · Lt]

Lt =

 1

D − t+ 1
Eσ∼U(SD)

∑
k∈σ(≥t)

log p(xk|xσ(≤t))

3.2.1 Locally Masked Convolutions

LMConv [15] attempts to approximate the joint pixel dis-
tribution by minimizing KL-divergence DKL(Pdata||Pθ) or
the log-likelihood of the samples. The PixelCNN family
uses masked convolutions to control information flow by
setting certain weights of convolution filters to 0. One of
the drawbacks of PixelCNN is it can only model a sin-
gle distribution of the joint density by scanning in a spe-
cific raster ordering. For tasks such as image completion,
these models are unable to use much of the observed con-
text. LMConv generates data in arbitrary order by applying
arbitrary masks to the weights at each image location us-
ing locally masked convolutions (modification to the stan-
dard convolution), providing flexibility similar to NADE
[32] and parallelizability similar to MADE and PixelCNN.
This allows control over the generation order and paral-
lel computation of conditionals for evaluating likelihood.
The network transforms input images into tensors of log-
probabilities that define conditional distributions. The pa-
per also explores different image generation orders, such as
raster scan, S-curve order, and Hilbert space-filling curve
order, and shows that LMConv provides flexibility in mod-
eling image generation orders and improves the likelihood

4

estimates over methods like PixelCNN++ by averaging joint
distributions obtained from multiple orderings during infer-
ence.

3.2.2 Autoregressive Diffusion Models (ARDM) [13]

This paper proposes a model that combines Order-Agnostic
Autoregressive models [33] and absorbing discrete diffu-
sion [1]. We outline the autoregressive approach used and
do not mention the diffusion methodology used. This model
masks variables at the input and predicts those at the output
to simulate the sampling of different σ as stated above. Let
us say we have x ∈ X = 1, 2, . . . ,KD representing the
discrete variables with K classes. In our case, this would
be the pixels or patches of the image. Let us sat we have a
neural network f : X −→ RD×K which outputs probability
vectors. For a given permutation array σ, the elmentwise
comparison m = σ < t which produces a boolean mask
which is used to mask out a set of inputs and train.

Figure 5. A single training step of ARDM [13]

The model predicts the distributions over multiple
variables(xσ(t+k)) while conditioning over xσ(<t) at the
same time. This allows the model to be parallelized while
estimating the image.

3.3. Transformer Based Networks

Most of the previously described models process the im-
age data sequentially which loses the global context. To
attend to the global context along with the local context,
further research has been conducted. With the great suc-
cess of transformer-based models in language modeling,
transformer-based architectures were also tested in the field
of computer vision, especially generative modeling. To this
end, Niki et al. proposed Image Transformer [23] for au-
toregressive image generation. The Image transformer ar-
chitecture takes inspiration from the Transformer model ar-
chitecture, which was originally designed for sequence-to-
sequence tasks in natural language processing.

Image Transformer models the problem of image
generation as a sequence modeling problem where it learns
the joint distribution of pixels. Each pixel is predicted
based on the previously predicted pixels following the

autoregressive strategy. One of the main components of the
image transformer is the self-attention layer which allows
it to capture both global and local context as done in the
language modeling process. However, the authors propose
to use self-attention to attend to local neighborhoods which
increases the size of the receptive field when compared
to a neural network, and the model can now also cater to
images of higher resolution. It uses negative log-likelihood
metric to train the model on generative tasks like image
completion and super-resolution. The model performance
opens up a new domain of transformer-based autoregressive
models and serves as proof that this architecture can attain
state-of-the-art performance.

Building on the transformer-based architecture, Esser et
al proposed ImageBART [9]. Their main motivation be-
hind proposing ImageBART [9] is that most of the au-
toregressive models model images as 1 dimensional (1D)
vector with looking at only the previously generated pix-
els while generating the current pixel and thus ignore a
global context. ImageBART [9] introduces a novel coarse-
to-fine strategy to tackle this issue. ImageBart takes inspi-
ration from BART [20] language model and incorporates
bi-directional learning into multimodal data consisting of
images and text.

Figure 6. ImageBART Overview Architecture (source: [9])

ImageBART uses a multinomial diffusion process
and learns to invert it via Markov chain into a compact
and discrete image representation space. They use a
coarse-to-fine strategy where each autoregressive model
attains global context from the previous representation in
the hierarchy. This hierarchical approach also solves the
problem of generating a complete image consistent with
the partial image being provided, which is a task that was
failed by most of the autoregressive models before. Esser et
al [9] try their approach on different image generative tasks
like conditional/unconditional image generation, image
completion, conditional inpainting, etc. One important
thing to note here is that for smaller datasets like [18]
ImageBART overfits, thus requiring large datasets to train.

Pathways Autoregressive Text-to-Image Model (Parti)

5

[43] is another transformer-based encoder-decoder architec-
ture that treats text-to-image generation as a sequence-to-
sequence modeling problem, analogous to machine transla-
tion allowing it to benefit from advances in large language
models (LLMs). It supports content-rich image synthe-
sis involving complex text compositions and world knowl-
edge. It is a 2-stage model composed of an image tok-
enizer and an autoregressive model as highlighted in Fig-
ure 7. The first stage involves training a powerful image
tokenizer - ViT-VQGAN [42] that encodes an input image
into a sequence of discrete visual tokens during the train-
ing phase and takes advantage of its ability to reconstruct
such image token sequences as high-quality and visually
diverse images. The target outputs are sequences of im-
age tokens instead of text tokens in another language. The
second stage trains an autoregressive sequence-to-sequence
encoder-decoder model that generates visual image tokens
from text tokens. These visual tokens are passed through
the decoder to an image detokenizer that generates an image
during inference. Parti’s components – encoder, decoder,

Figure 7. Parti Overview Architecture (source: [43])

and image tokenizer – are based on standard transformers
[37]. This paper demonstrates that AR models can achieve
state-of-the-art performance and also shows that scaling the
model size consistently improves model performance and
capability to generate high-fidelity photo-realistic images.

3.4. Quantization Based Models

Auto-regressive Image Synthesis with Integrated Quan-
tization [44] proposes a novel idea of integrating feature
quantization with variational regularizer into the autoregres-
sive part of the generative modeling. The variational regu-
larizer regularizes the feature distributions by penalizing the
latent spaces of the feature distribution if the inter-domain
variation is higher. The publication also provides a novel
way of dealing with the distribution uncertainty in the au-
toregressive module by proposing a Gumbel sampling strat-
egy. The architecture of integrated quantization VAE (IQ-
VAE) can be described in three main parts -

• The image (X) and condition (C) are encoded into the la-
tent space using an Autoencoder concurrently.

• This distribution of X and C is then modeled by an au-
toregressive transformer

• Then the model samples diverse sequence distributions
which are then inversely quantized and then merged with
the encoded condition.

The approach was tested on multiple datasets which con-
tained different variety of images like DeepFashion [21],
CelebA-HQ [22], ADE20k [45], etc. They evaluate their
proposed approach on tasks of semantic-to-image, edge-to-
image and keypoint-to-image generation.

Table 1. Performance of different models on CIFAR10 [18] Image
generation task. The values have been curated from different pub-
lications and only reported for those models whose values were
publically available

Models bits/dimension

ARDM [13] (Upscale 4) 2.64
Image Transformer [23] 2.89
PixelCNN [34] 3.14
PixelRNN [34] 3
Gated PixelCNN [26] 3.03
PixelCNN++ [27] 2.92
PixelSNAIL [5] 2.88

4. Autoregressive Video Generation
Autoregressive video generation has been an active area

of research, aiming to generate realistic and coherent video
sequences by predicting each frame based on previously
generated frames. Learning an accurate video prediction
model can be very difficult as this requires both high-fidelity
image generation and also modeling the physical dynamics
of the video content. This is an extremely difficult learn-
ing task and requires a lot of computing resources. There
are three general strategies that can be employed for autore-
gressive video generation.

1. modeling at an atomic pixel level across time and space.
2. modeling each frame based on the previous frame
3. modeling done in a downsampled latent space.

The latter works better as natural images contain a lot of
redundancies, hence video compression formats like JPEG
[39] and video compression approaches like MPEG [19]
work so seamlessly. These redundancies can be removed
by mapping the images to a downsampled latent space re-
sulting in image denoising. Furthermore, autoregressively
modeling the latent space rather than the pixels provides
improved sampling speed and compute requirements due to
the reduced dimensionality.

4.1. Autoregressive modeling in Pixel Space

Video Pixel Network (VPN) [17] is a probabalistic video
model and one of the first models that can generate videos

6

by estimating the joint distribution of pixel values. VPN is
designed to capture the time, space, and color structure of
video tensors and encode it as a four-dimensional depen-
dency chain. It uses a factorization approach that allows it
to model stochastic transitions locally and globally without
introducing independence assumptions. The architecture of
the VPN consists of resolution-preserving CNN encoders
and PixelCNN decoders. The encoders preserve the spa-
tial resolution of input frames, while the decoders capture
space and color dependencies using masked convolutions.
The VPN also incorporates a convolutional LSTM to model
temporal dependencies. This is primarily what makes it a
Autoregressive model. The VPN is benchmarked on the
Moving MNIST and Robotic Pushing datasets. It generates
videos that closely match the ground truth and can general-
ize to the motion of novel objects. The paper compares the
VPN with a baseline model that lacks spatial and color de-
pendencies, demonstrating the importance of these depen-
dencies in avoiding systematic artifacts in generated videos.
The VPN models each conditional factor as a discrete multi-
nomial distribution which allows for arbitrarily multimodal
predictions.

The model from [25] builds on the PixelCNN architec-
ture by parallelising the processing to improve speed. They
also benchmark their model on the Action-Conditioned
Video Generation task and beat the VPN architecture. They
extend their architecture for video generation by adding 2
previous frames as input which act as the context c and max-
imizing the conditional likelihood of the next frame based
on this context. The conditional likelihood is as follows:

p(x1:G
1:T |c; θ) =

G∏
g=1

p(x
(g),c
1:T |x(1:g−1)

1:T ; c; θ) (4)

where the assumption is that G groups contain T pixels.
Video Transformer [40] scales then recent advances in

autoregressive neural architectures to modern hardware ac-
celerators. Videos are modelled as a 3D volume without
making distinctions between the spatial and temporal di-
mensions. The distribution p(x) is modelled over videos
x :

p(x) =

Np−1∏
i=0

Nc−1∏
k=0

p(xπ(i))
k|x<π(i)), xπ(i))

<k) (5)

Where T is time, H is height, W is the width and Nc is
the number of channels Np = T · H · W is the number of
pixels and π is the ordering which is given by raster scan
ordering, combined with subscale. The following ideas are
introduced which help in scaling the models:

• Block-local Self-attention: The adjacency matrix A
ϵ RNpxNp in standard transformers interconnects every

element. This leads to quadratic growth and is infea-
sible for videos. Hence, video is divided into smaller
non-overlapping 3D blocks and attention is applied in-
dividually to these blocks. This approach can be effi-
ciently implemented in TPUs, which allows increasing
model scale with minimal loss in expressive power. The
proposed Video Transformer comprises multiple stacked
self-attention layers which divide the data into smaller
blocks of size (t,h,w) and apply self-attention. Operat-
ing on these 3D sub-volumes leads to lack of information
exchange between the blocks. This can be addressed by
changing the block sizes between layers. The resulting
outputs do not have observable artifacts.

• Spatiotemporal Subsampling: A subscaling factor s =
(st, sh, sw) is defined which divides the video vol-
ume into (sh · sw cdotst) slices each of resolution
(T/st, H/sh,W/sw). The slices are generated one at a
time which reduces pixels in memory to Np/s and al-
lows scaling the model by s. The current slices are gen-
erated conditioned on the pixels of previous slices. The
first step is passing through a subscale encoder where the
video undergoes masking and embedding. Subsequently,
a 3D padded convolution is applied with stride s to obtain
the desired resolution. Then the positional embedding for
each axis and embedding of the current slice is added to
the convolution output which is further transformed by
a linear projection and passed to the L block-local self-
attention layers. The resulting output is passed to the sub-
scale decoder. The decoder is similar to the encoder, the
current slice is embedded and a 3x3x3 masked convolu-
tion is applied. Then the positional embeddings are added
for all the dimensions and this is passed through the L
block-local self-attention layers, with masking. The final
pixel intensities are predicted by MLP with a single hid-
den layer and are conditioned on this output. The video
slice loss is defined as the negative log-likelihood.

4.2. Autoregressive Frame Prediction

These models predict the next frame based on a previ-
ous frame or set of previous frames as input. [14] frames
this task as generating a sequence of T video frames, de-
noted as V ′ = {f ′

t}Tt=1 given an image f0ϵR
HxWx3 as the

starter frame. This is a hard problem as no temporal infor-
mation is provided by the input. Being autoregressive0 it
can generate videos of arbitrary lengths and smooth trajec-
tories. However, this approach suffers from two main dis-
advantages. First, as the generation process goes on, noises
and undesirable artifacts accumulate, and as a result, the
generation quality suffers over time. Second, the nature of
autoregressive generation leads to discrepant behaviors dur-
ing the training and testing phases. To counter these two
main ideas are utilized:

7

• Complementary mask mechanism is a key component of
the generator network. It separates static pixels and vari-
able pixels such that the model learns to reuse some pix-
els from the previous time step. In this way, the quality
degradation problem in the autoregressive generation pro-
cess is greatly suppressed. The mask used for static and
variable pixels sums to one enforcing the complementary
relationship while constructing a frame.

• Scheduled Sampling deals with the discrepancy between
training and testing. If only ground truth next-frames
are used during training, the model lacks the ability to
deal with generated frames. Scheduled sampling is per-
formed in the later epochs of training where the model
randomly switches its input between the ground truth cur-
rent frame ft and the synthesized current frame f ‘

t pro-
duced by the previous time step. In this way, we can in-
crease the model’s exposure to its own generations, and
bridge the behavioral gap between training and testing
phases of generations.

The architecture comprises a generator that has two streams
- ResNet-based (for mask) and a U-Net based (provides
difference map between previous frame and next frame).
The global discriminator distinguishes between ground-
truth next frame and generated next frame. The local dis-
criminator distinguishes between variable pixels. Patch-
GAN was used for both.

4.3. Latent Video Prediction

These are models that divide video generation into two
sub-tasks - First, training an image-generator and second,
training an autoregressive model for video prediction.

4.3.1 Predicting Video with VQVAE [38]

This paper uses hierarchical latent representations and com-
bines them with autoregressive models (PixelCNNs) to pre-
dict videos. They use coarse-to-fine modeling and condi-
tioning on latent representations to manage the complexity
of video prediction while capturing temporal dependencies.

4.3.2 Transformer-Based Architectures

Latent Video Transformer (LVT) [24] utilizes a latent space
and transformers to capture long-term dependencies across
frames and generate high-quality videos. The transformer
architecture enables efficient modeling of spatial and
temporal dependencies, while the VAE framework provides
a structured latent space for improved video synthesis.
Firstly, the frames are encoded into a discrete latent space
via a Vector Quantised VAE (VQ-VAE) [36]. Sliced
Vector Quantization [46] is used to prevent index collapse
(a common problem in VQ-VAEs). New latent frames

are then generated in an autoregressive manner using a
transformer. These latent frames are decoded back to pixel
space via the VQ-VAE decoder. LVT achieves impressive
results in generating diverse and realistic video sequences.

VideoGPT [41] also uses the VQ-VAE encoder-decoder
and the autoregressive GPT model. VQ-VAE is responsible
for learning a downsampled discrete representation of input
video using 3D convolutions and axial self-attention. This
encoding captures the spatial and temporal redundancies
in the video frames. The discrete latents are then fed
into the GPT-like model, which autoregressively predicts
the next latent frame based on the previous ones using
spatiotemporal position encodings. Finally, the decoded
latents are upsampled to generate videos at the original
resolution. The choice of using likelihood-based models for
video generation is motivated by their success in modeling
discrete data and their well-established training recipes.
Likelihood-based models also offer advantages in terms
of optimization and evaluation compared to adversarial
models.

HARP [28] extends the above work to scale up the
autoregressive video prediction to much higher resolutions
and high-fidelity videos. HARP can do the above with
minimal modifications to the existing training recipes. It
replaces the VQ-VAE with a VQ-GAN [10] that proves to
be effective for high-resolution image generation. Further,
it uses a causal transformer for autoregressive modeling
in the discrete latent space. Another advantage of HARP
is that it can leverage image generators trained on a vast
set of natural images (such as ImageNet [6] dataset) to
train a high-resolution video prediction model on complex
and large-scale datasets like Kinetics-600. It incorporates
techniques like top-k sampling and data augmentation to
further enhance video prediction quality. The paper also
highlights some common shortcomings such as modeling
complex inter-object interactions and sometimes getting
stuck in local minima with degenerate video predictions.

Overall, VideoGPT [41], LVT [24] and HARP [28] pro-
vide a simple yet effective approach to video generation
using a combination of VQ-VAE and Transformers, and it
serves as a reference for minimalistic implementations of
transformer-based video generation models.

Table 2. FVD Scores for models on the BAIR Robot Pushing
dataset

Models FVD (↓)

Video Transformer [40] 94
HARP [28] 99.3
Video GPT [41] 103.3
LVT [24] 125.8

8

5. Datasets and Metrics
5.1. Image Generation

Most approaches evaluate their methods on a subset of
MNIST [7], CIFAR-10 [18], ImageNet 32 × 32 [6], and
high-resolution CelebA-HQ [22] dataset. The metrics com-
monly used to compare image generation models are bits
per dimension (BPD) or average negative log-likelihood
(NLL) in equation 6, Fréchet Inception Distance (FID) [12],
and Inception score over the image dimensions, which rep-
resent the measure of sample quality.

NLL(x) = − logP (x1, . . . , xn2) = −
n2∑
i=1

logP (xi|x<i)

(6)

5.2. Video Generation

One of the most common datasets used for this task is
the BAIR Robot Pushing [8] consisting of 40K training and
256 test videos. Some other datasets include the Moving
MNIST [29] and the Kinetics-600 dataset [3] (now updated
to 700). The most commonly used evaluation metric is
Fréchet Video Distance (FVD) [31] which builds on the FID
score [12]. FVD introduces a feature representation to cap-
ture the temporal coherence of the video content, in addition
to each frame’s quality. The metric uses an Inflated 3D Con-
vNet (I3D) [4] to learn pre-trained feature representation.
The I3D model is applied to get a conditional label distri-
bution for the video p(y|x). Assuming the distribution for
the model output is pmodel = N (µmodel,Σmodel) and the
distribution for the ground truth is pGT = N (µGT ,ΣGT),
we can calculate the Fréchet Distance as:

d(pmodel, pGT) = ||µmodel − µworld||22
+Tr(Σmodel +ΣGT − 2(ΣmodelΣGT)

1
2)

Multivariate Gaussian distribution is chosen because the
Gaussian is the maximum entropy distribution for a given
mean and covariance.

6. Insights and Critical Analysis
Autoregressive image generation models have been

widely used due to their straightforward training approach.
However, they also present a challenging optimization prob-
lem when it comes to maximizing the likelihood of data.
To address this limitation, researchers have increasingly fa-
vored diffusion models, which offer a more manageable
task. Instead of optimizing the entire likelihood of data, dif-
fusion models sample and optimize a component of the like-
lihood. Order-agnostic autoregressive models are a step in
this direction and should be explored more as they alleviate
some difficulties associated with the optimization challenge

and also allow for parallelized image generation leading to
improved inference speeds.

For autoregressive video generation, current state-of-the-
art models struggle to accurately model complex object in-
teractions observed in the real-world, as exemplified by
HARP. To overcome this limitation, incorporating physics
priors can be a valuable approach. By disentangling the
task of redundant image computations and modeling intri-
cate interactions, physics priors help enhance the models’
capability to capture realistic dynamics. Taking inspiration
from Simultaneous Localization and Mapping (SLAM) sys-
tems, which implicitly model the physics of the environ-
ment and camera movement, can provide valuable insights
for incorporating such priors into autoregressive video gen-
eration models.

By addressing the drawbacks and exploring these im-
provements in autoregressive image and video generation
models, we can pave the way for more advanced and realis-
tic generative models in computer vision.

References
[1] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tar-

low, and Rianne van den Berg. Structured denoising diffu-
sion models in discrete state-spaces, 2023. 1, 5

[2] Yoshua Bengio and Samy Bengio. Modeling high-
dimensional discrete data with multi-layer neural networks.
In Proceedings of the 12th International Conference on
Neural Information Processing Systems, NIPS’99, page
400–406, Cambridge, MA, USA, 1999. MIT Press. 2

[3] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zis-
serman. A short note on the kinetics-700 human action
dataset, 2022. 9

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset, 2018.
9

[5] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter
Abbeel. Pixelsnail: An improved autoregressive generative
model, 2017. 1, 4, 6

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 8, 9

[7] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012. 9

[8] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey
Levine. Self-supervised visual planning with temporal skip
connections, 2017. 9

[9] Patrick Esser, Robin Rombach, Andreas Blattmann, and
Björn Ommer. Imagebart: Bidirectional context with multi-
nomial diffusion for autoregressive image synthesis, 2021. 1,
5

[10] Patrick Esser, Robin Rombach, and Björn Ommer. Taming
transformers for high-resolution image synthesis, 2021. 8

9

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 2

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium, 2018. 9

[13] Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings,
Ben Poole, Rianne van den Berg, and Tim Salimans. Autore-
gressive diffusion models, 2022. 1, 5, 6

[14] Jiahui Huang, Yew Ken Chia, Samson Yu, Kevin Yee, Dennis
Küster, Eva G. Krumhuber, Dorien Herremans, and Gemma
Roig. Single image video prediction with auto-regressive
gans, May 2022. 7

[15] Ajay Jain, Pieter Abbeel, and Deepak Pathak. Locally
masked convolution for autoregressive models. In Confer-
ence on Uncertainty in Artificial Intelligence (UAI), 2020. 1,
4

[16] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid
long short-term memory, 2016. 3

[17] Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan,
Ivo Danihelka, Oriol Vinyals, Alex Graves, and Koray
Kavukcuoglu. Video pixel networks, 2016. 1, 6

[18] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10
(canadian institute for advanced research). 5, 6, 9

[19] Didier Le Gall. Mpeg: A video compression standard for
multimedia applications. Commun. ACM, 34(4):46–58, apr
1991. 6

[20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and
Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and
comprehension, 2019. 5

[21] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1096–1104, 2016. 6

[22] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild, 2015. 6, 9

[23] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer, 2018. 1, 4, 5, 6

[24] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, De-
nis Zorin, and Evgeny Burnaev. Latent video transformer.
CoRR, abs/2006.10704, 2020. 1, 8

[25] Scott Reed, Aäron van den Oord, Nal Kalchbrenner, Ser-
gio Gómez Colmenarejo, Ziyu Wang, Dan Belov, and Nando
de Freitas. Parallel multiscale autoregressive density estima-
tion, 2017. 1, 7

[26] Scott E. Reed, Aaron van den Oord, Nal Kalchbrenner, Vic-
tor Bapst, Matthew M. Botvinick, and Nando de Freitas.
Generating interpretable images with controllable structure,
2017. 1, 3, 6

[27] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P.
Kingma. Pixelcnn++: Improving the pixelcnn with dis-
cretized logistic mixture likelihood and other modifications,
2017. 3, 4, 6

[28] Younggyo Seo, Kimin Lee, Fangchen Liu, Stephen James,
and Pieter Abbeel. Harp: Autoregressive latent video pre-
diction with high-fidelity image generator, 2022. 1, 8

[29] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdi-
nov. Unsupervised learning of video representations using
lstms, 2016. 9

[30] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmid-
huber. Training very deep networks, 2015. 3

[31] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphaël Marinier, Marcin Michalski, and Sylvain Gelly.
FVD: A new metric for video generation, 2019. 9

[32] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain
Murray, and Hugo Larochelle. Neural autoregressive dis-
tribution estimation, 2016. 2, 4

[33] Benigno Uria, Iain Murray, and Hugo Larochelle. A deep
and tractable density estimator, 2014. 5

[34] Aäron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. CoRR,
abs/1601.06759, 2016. 1, 2, 3, 4, 6

[35] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Condi-
tional image generation with pixelcnn decoders. CoRR,
abs/1606.05328, 2016. 3

[36] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning,
2018. 8

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017. 2, 6

[38] Jacob Walker, Ali Razavi, and Aäron van den Oord. Predict-
ing video with vqvae, 2021. 1, 8

[39] G.K. Wallace. The jpeg still picture compression standard.
IEEE Transactions on Consumer Electronics, 38(1):xviii–
xxxiv, 1992. 6

[40] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit.
Scaling autoregressive video models, 2020. 1, 7, 8

[41] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind
Srinivas. Videogpt: Video generation using vq-vae and trans-
formers, 2021. 1, 8

[42] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang,
James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge,
and Yonghui Wu. Vector-quantized image modeling with
improved vqgan, 2022. 6

[43] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,
Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and
Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation, 2022. 1, 6

[44] Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang,
Kaiwen Cui, Changgong Zhang, and Shijian Lu. Auto-
regressive image synthesis with integrated quantization,
2022. 1, 6

[45] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5122–5130,
2017. 6

10

[46] Łukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki Parmar,
Samy Bengio, Jakob Uszkoreit, and Noam Shazeer. Fast de-
coding in sequence models using discrete latent variables,
2018. 8

[47] Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algo-
rithms, 2016. 3

11

	. Introduction
	. Autoregressive Generative Models
	. Autoregressive Image Generation
	. Order Dependent Autoregressors
	. Order-Agnostic Autoregressive Models
	Locally Masked Convolutions
	Autoregressive Diffusion Models (ARDM) hoogeboom2022autoregressive

	. Transformer Based Networks
	. Quantization Based Models

	. Autoregressive Video Generation
	. Autoregressive modeling in Pixel Space
	. Autoregressive Frame Prediction
	. Latent Video Prediction
	Predicting Video with VQVAE walker2021predicting
	Transformer-Based Architectures

	. Datasets and Metrics
	. Image Generation
	. Video Generation

	. Insights and Critical Analysis

